IPCC Dud Rainfall Predictions for the Murray-Darling Basin

The IPCC’s recently released 5th Assessment Report (AR5) dedicated Chapter 25 to impacts of climate change on Australasia. There was wide media reporting of these impacts, including that of decreasing rainfall- more droughts and floods. The relevant part of Chapter 25 outlines eight regional key risks, including:

For some impacts, severity depends on changes in climate variables that span a particularly large range, even for a given global temperature change. The most severe changes would present major challenges if realized:

……. significant reduction in agricultural production in the Murray-Darling Basin and far south-eastern and south-western Australia if scenarios of severe drying are realised; more efficient water use, allocation and trading would increase the resilience of systems in the near term but cannot prevent significant reductions in agricultural production and severe consequences for ecosystems and some rural communities at the dry end of the projected changes.

Section 25.2, Observed and Projected Climate Change, gives the details:

This pattern of projected rainfall change is reflected in annual average CMIP5 model results (Figure 25-1), but with important additional dimensions relating to seasonal changes and spread across models (seealso WGI Atlas, AI.70-71). Examples of the magnitude of projected annual change from 1990 to 2090 (percent model mean change +/- intermodel standard deviation) under RCP8.5 from CMIP5 are -20±13% in south-western Australia, -2±21% in the Murray Darling Basin, and -5±22% in southeast Queensland (Irving et al., 2012). Projected changes during winter and spring are more pronounced and/or consistent across models than the annual changes, e.g. drying in southwestern Australia (-32±11%, June to August), the Murray Darling Basin (-16±22%, June to August), and southeast Queensland (-15±26%, September to November), whereas there are increases of 15% or more in the west and south of the South Island of New Zealand (Irving et al., 2012). Downscaled CMIP3 model projections for New Zealand indicate a stronger drying pattern in the south-east of the South Island and eastern and northern regions of the North Island in winter and spring (Reisinger et al., 2010) than seen in the raw CMIP5 data; based on similar broader scale changes this pattern is expected to hold once CMIP5 data are also downscaled (Irving et al., 2012).

As the Murray-Darling Basin (MDB) is the nation’s major food bowl, contributing a very large proportion of our agricultural production, a Reality Check on these claims is in order.

The Murray-Darling Basin is the largest catchment in Australia, and is one of the Bureau of Meteorology’s climate regions:

Fig.1: MDBRegions

First, annual rainfall. The IPCC projects an annual change of -2% +/-16% from 1990 to 2090. Here are the rainfall anomalies for the MDB straight from the Bureau’s Climate Change page:

Fig.2: MDB Annual Rainfall Anomalies, 1900-2013:MDB annual anoms

Linear trends have limited use in such a manifestly non-linear dataset as rainfall, however I put one in just in case someone says rainfall is decreasing. Even with 2010 deleted the trend is still positive. Let’s now look at the 10 year means:

Fig.3: MDB Annual Decadal Means:MDB annual anoms 10yrs

Note that for the entire period before the 1950s, the 10 year mean was below the 1961-1990 mean, and in 1946 was 94mm below. While in 2009 the 10 year average was 69mm below the mean, this being the first time in six decades it had been below -60mm, for most of the 1940s it was more than 60mm below the mean. It is entirely possible that rainfall will be below average in the MDB for several more decades, and this would be completely normal.

I shall now project this historical trend through to 2090, with a 2090 rainfall of 512.35mm, 2% below that of 1990 (522.81mm).

Fig.4: MDB Annual Rain to 2090:MDB annual rain to 2090

So that’s what a decrease in rainfall looks like! Note the uncertainty range- well within historical norms, and the low figure (404.76mm) is in the below average (lowest 30% of years) rainfall category by less than 4mm.

Next, winter rainfall (-16% +/-22%, June to August). From BOM Climate Change,

Fig.5: MDB Winter Anomalies 1900-2013MDB winter anoms
There you can see the declining trend (BOM says -0.57mm per decade)- but note the size of the trend compared with the variability.

Interestingly, consider the same data for the last 54 years.

Fig.6: MDB Winter Anomalies 1960-2013MDB winter anoms 1960-2013
But of course, the authors have detected the drying trend since the 1990s!

Now, decadal means:

Fig.7: MDB winter decadal means:MDB winter anoms 10yrs

Note the 10 year mean about -10mm in past decade, but -15mm in the 1970s and -19mm in the 1940s. Note also that the 10 year average was below zero for the better part of two decades, twice, in the past. Below average winter rain for the next few years would be completely normal, if the past is anything to go by.

Here is a chart showing the number of dry winters per 10 year period in the MDB.

Fig.8: 10 year count of below average winters.MDB winter anoms  under30%10yrs

Below average winters were more frequent in the past.

Projecting the winter anomalies into the future, with a decrease of -16±22%, June to August, we get:

Fig.9: MDB Winter Rain to 2090:MDB winter rain to 2090

109.74mm is almost exactly the 1961-1990 mean (111.1mm). The low end of the uncertainties, 85.6mm, is in the below average range but well outside the severe deficiency or even serious deficiency level. Yet this will cause “significant reductions in agricultural production and severe consequences for ecosystems and some rural communities”?

Note: these projections are based on continued warming by up to 2 degrees. Consider that we have already seen warming in the MDB of about +0.8 C since 1910 (according to BOM analysis based on ACORN-SAT).

It appears that the IPCC can’t be wrong, whether rainfall is higher, lower, or stays the same. They’re having two bob each way.

In discussing agricultural production, I would have been less underwhelmed if rainfall in other seasons had been considered. If winter rain is down (marginally), but annual rain is up, when did it fall?
Briefly, autumn, like winter, is almost flat (-0.59mm per decade), spring is up by 1.61mm per decade, but summer rain has increased 3.86mm per decade. If heavy rain falls before the wheat harvest is off, the crop is seriously downgraded, so late spring- early summer rainfall increasing would be of concern.

Fig.10: MDB Summer Rain AnomaliesMDB summer anoms

Fig.11: MDB Decadal Summer RainMDB summer anoms 10yrs

Note that summer rain increase is all since 1950. For 60 years farmers have been contending with this. It’s nothing new. Farmers adapt farming methods to changing conditions and with new technology. Moreover, the recent decadal peak is about the same as the 1960s and 1990s. Note also that the low decadal mean of the Millennium Drought is nowhere near the levels of past dry periods.

The warming to now has ‘resulted’ in increased annual rain, made up mostly of stronger summer rains since 1950, and marginally less winter and autumn rain which is less variable than in the early decades of last century.  The IPCC’s projections are thus the result of climate models and not historic observation, are subject to large uncertainty, and not greatly different from patterns of the past 114 years.

The AR5 prediction of dire consequences for the Murray-Darling Basin, based on rainfall projections that are essentially no different from historical observations, is nonsense. It is beyond parody, beyond ridicule. It treats the citizens and farmers of Australia with contempt.

About these ads

Tags: , , , ,

6 Responses to “IPCC Dud Rainfall Predictions for the Murray-Darling Basin”

  1. Jennifer Says:

    Interesting analysis. That 2% decline in annual average rainfall is based on output from 27 different General Circulation Models some of which predict significant increase, some significant decrease in rainfall… The key paper as relevant to the Murray Darling’s rainfall is summarised here http://www.mythandthemurray.org/confidence-in-long-term-rainfall-predictions-declining/

    I’ve also written about this in my column in The Land newspaper this week.

    Your second chart, showing the rainfall anomaly, indicates that the rainfall anomaly moved from negative to positive in about 1957. This is also the year that the BOM corrects temperature data for places like Bourke up for cooling. Of course wetter years are often cooler.

  2. kenskingdom Says:

    Thanks Jen, I would have said the anomaly started moving up in the late 1940s. The wet year of 1950 really got it going.. My old wooden ruler can do just as good a job at extrapolating a linear trend 75 years into the future.. might even post about that too.

  3. siliggy Says:

    Ken i love the way you get to the heart of the matter.
    I trust your old ruler Ken. You have again shown it is wise to invest in all things the IPCC predict will fail.

  4. kenskingdom Says:

    Ta, Lance. Of course you realize the IPCC authors for this chapter were headed by Professor Karoly? Enough said?

  5. weathercycles Says:

    Reblogged this on CRIKEY !#&@ …… IT'S THE WEATHER CYCLES and commented:
    INDEPENDENT ASSESSOR.. KEN STEWART
    IPCC Dud Rainfall Predictions for the Murray-Darling Basin
    Lots of analysis and graphs to get your teeth into

    http://kenskingdom.wordpress.com/2014/04/04/ipcc-dud-rainfall-predictions-for-the-murray-darling-basin/

  6. IPCC Dud Rainfall Predictions for the Murray-Darling Basin | CRIKEY !#&@ ...... IT'S THE WEATHER CYCLES Says:

    […] INDEPENDENT ASSESSOR.. KEN STEWART IPCC Dud Rainfall Predictions for the Murray-Darling Basin Lots of analysis and graphs to get your teeth into http://kenskingdom.wordpress.com/2014/04/04/ipcc-dud-rainfall-predictions-for-the-murray-darling-bas… […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Follow

Get every new post delivered to your Inbox.

Join 42 other followers

%d bloggers like this: