Archive for February, 2018

Fingerprints of Greenhouse Warming: Poles Apart

February 26, 2018

If global warming is driven by the influence of carbon dioxide and other man made greenhouse gases, it will have certain characteristics, as explained by Karl Braganza in his article for The Conversation (14 June 2011).

As water vapour is a very strong greenhouse gas, it will tend to mask the influence of man made greenhouse gases, and because solar radiation is such a powerful driver of temperature, this also must be taken into account.  Therefore, the characteristic greenhouse warming fingerprints are best seen where solar and water vapour influences can be minimised: that is, at night time, in winter, and near the poles.  So we would look for minimum temperatures rising faster than maxima; winter temperatures rising faster than summer, and polar temperatures rising faster than the tropics.  Indeed, polar temperature change in winter should be an ideal metric, as in Arctic and Antarctic regions the sun is almost completely absent in winter, and the intense cold means the atmosphere contains very little water vapour.  We can kill three birds with one stone, as winter months in polar regions are almost continuously night.

So let’s look at the evidence for greater winter and polar warming.

Figure 1: North Polar Summers:

NP summers

Figure 2:  North Polar Winters:

arctic all winters

Yep, North Polar winters are warming very strongly, at +2.58C/100 years, and much faster than summers (+1.83C/100 years)- strong evidence for anthropogenic global warming.  And warming is much faster than the Tropics (+1.023C/100 years):

Figure 3: Tropics

Tropics TLT

Unfortunately for the theory, the opposite happens in the South Polar region:

Figure 4: South Polar Summers

SP summers

Figure 5:  South Polar Winters:

antarctic all winters

While summers are warming (+0.58C/100 years), winters are cooling strongly at -1.66C/100 years.  Over land areas, with little influence from the ocean, very low moisture, and very little solar warming, winters are cooling even faster:

Figure 6:  Antarctic winters over land:

antarctic land winters

This is the exact opposite of what is supposed to happen in very dry, cold, and dark conditions- at night, in winter, at the poles.  Can this be because carbon dioxide and other greenhouse gases are NOT well mixed, and are in fact decreasing in concentration near the South Pole?

Figure 7: Carbon Dioxide concentration at Cape Grim (Tasmania):

C Grim CO2

Figure 8:  South Polar region TLT (all months) as a function of CO2 concentration:SP vs co2

No, while Cape Grim data show CO2 concentration to be increasing in the Southern Hemisphere, but without the marked seasonal fluctuations of the Northern Hemisphere, there is NO relationship between CO2 and temperature in the South Polar region.

Is it because the oceans around Antarctica are cooling?

Figure 9: South Polar Ocean TLT:

SP ocean

Nope- -0.01C/100 years (+/- 0.1C).  Neither cooling nor warming.

The cold, dry, dark skies over Antarctica are getting colder in winter.  Summers show a small warming trend.

Conclusion:  The fingerprints of man made greenhouse warming are completely absent from the South Pole, and differences between North and South Polar regions must, until shown otherwise, be due to natural factors.

Data sources:

https://www.nsstc.uah.edu/data/msu/v6.0/tlt/uahncdc_lt_6.0.txt

http://www.csiro.au/en/Research/OandA/Areas/Assessing-our-climate/Latest-greenhouse-gas-data

Mandated disclaimer:-

“Any use of the Content must acknowledge the source of the Information as CSIRO Oceans & Atmosphere and the Australian Bureau of Meteorology (Cape Grim Baseline Air Pollution Station) and include a statement that CSIRO and the Australian Bureau of Meteorology give no warranty regarding the accuracy, completeness, currency or suitability for any particular purpose and accept no liability in respect of data.”

Advertisement

BEST Adjustments

February 11, 2018

Two years ago I wrote a post about changes in Diurnal Temperature Range (DTR) and whether these were a “Fingerprint of enhanced greenhouse warming”, as claimed by Dr Karl Braganza in an opinion piece at The Conversation in 2011, and in his 2004 paper.

It being time to check more recent data (in 2016 the BEST data finished at December 2015), I went to the BEST site and downloaded the most recent monthly data for maxima and minima, which now extends to July 2017.

I should not have been surprised to find that the two datasets, produced 18 months apart, are different.  The differences are not large enough to be immediately apparent (from 1850 to 2015 the increase in trend per 100 years is only 0.023 degrees Celsius for maxima and 0.007C for minima), but they are none-the-less influential.

Here’s why.

Fig. 1: BEST Tmax 2016 minus 2017 (above zero means the data has been cooled, below zero means it has been warmed.)

BEST max diff

Note the large corrections before 1910, but the overall effect is minor.

Fig. 2:  BEST Tmin 2016 minus 2017

BEST min diff

I have shown the zero value, meaning no adjustment.  Note the large adjustments pre-1910 (but at different times to maxima); apart from two short periods, the whole series is WARMED by about 0.1C; I have marked with arrows the period from the late 1950s to the early 1980s when adjustments were minimal; but note the sudden drop (from January 1983) with recent minima WARMED by about 0.1C.

They have warmed the present and pre-1950, but left the cool 1950 – 1980 period largely alone.   What effect would this have?

Not much if you are looking only at temperature- they certainly can’t be accused of the more usual cooling the past and warming the present.  But if you are looking to find fingerprints of greenhouse warming, this is gold.  One of the fingerprints of enhanced greenhouse warming is greater warming at night than during the day, such that the Diurnal Temperature Range decreases.

The effect is subtle.  There is virtually no change in the long term DTR trend from 1850.

Fig. 3:  Diurnal Temperature Range calculated from BEST 2016:

BEST dtr 1850 2015

Fig. 4:  DTR calculated from BEST 2017:

BEST dtr 1850 2015 2017 version

But there is much uncertainty in data before 1910 as we are told, which is why BOM climate datasets start from 1910.

Fig. 5:  DTR 1910 – 2015 from BEST 2016:

BEST dtr 1910 2015 2016 version

Fig. 6:  DTR 1910 – 2015 from BEST 2017:

BEST dtr 1910 2015 2017 version

Again, virtually no change.  Aha, I hear Global Warming Enthusiasts chortle, gotcha!

The real effect of the adjustments is on the period from 1950, when man-made atmospheric carbon dioxide began increasing rapidly.

Fig. 7:  DTR 1950 – 2015 from BEST 2016:

BEST dtr 1950 2015 2016 version

Note the linear trend value: that equates to less than -0.1C per 100 years- a clear fault with the 2016 BEST data.  But with the new, improved 2017 version, the downward trend in DTR becomes:

Fig. 8:  DTR 1950 – 2015 from BEST 2017:

BEST dtr 1950 2015 2017 version

A three-fold increase in the downward trend in DTR.  This is much better support for the narrative of strong greenhouse warming since 1950.  How convenient.  We just have to wait for the papers and publicity about new evidence for decreasing DTR.

But Global Warming Enthusiasts wouldn’t want us to look at shorter time frames, particularly starting from the dog-leg which still exists from 1983, despite BEST’s warming of the minima data since then by about 0.1C.  This graph includes data to July 2017.

Fig. 9:  DTR 1983 – 2017

BEST dtr 1983 2017 2017 version

That looks like a rather long period of increasing DTR- not good evidence for the meme.  Don’t worry, they’ll explain that by claiming it’s due to “increased cloud and rain” since 1983, and besides, you have to look at the long term trend.

So be prepared for papers and press releases spruiking new confirmation that greenhouse warming is real, as evidenced by strong DTR decrease since 1950.

And all because of almost undetectable changes to the BEST datasets.