First Wave Covid19 Mortality in Context

Key takeaway points:

  • It is likely that the real Covid19 death toll was at least double the official tally, and possibly hundreds more.
  • Despite this, there were 1,457 fewer deaths in the first six months of this year than last year.
  • The first lockdown worked- until the Victorian fiasco.

In this post I use the most recent Mortality data (released 1 October 2020) from the Australian Bureau of Statistics (ABS), up to 30 June 2020, and the most recent ABS Population data, to examine the effect of the Covid19 pandemic on Australian deaths.  This period covers the whole of the first wave of the pandemic and gives interesting insights.  Future data releases covering the second wave (with another 800 Covid19 deaths) will provide further illumination.

The ABS advises that the data are provisional and not complete as deaths subject to coroners’ inquests are not included, but with completeness percentages in the high 90s “meaningful comparison with historic counts” may be made.

Key statistics from the ABS:

  • 68,986 doctor certified deaths occurred between 1 January 2020 and 30 June 2020.
  • Numbers of deaths have been below historical averages since mid May and below baseline minimums since the week ending 9 June.
  • Deaths from respiratory diseases and heart diseases were below historical minimum counts throughout June.

Figure 1:  ABS chart of deaths and Covid19 infections

The peak of new coronavirus infections was in the week ending 31 March, with 2,428 new infections in that week (Week 13), and the peak in all mortality also occurred in that week.  The following plot shows official Covid19 mortality (from Worldometers) peaking in Week 14.

Figure 2:  Covid19 first wave deaths

The ABS says that the World Health Organisation (WHO) early in 2020 “directed that the new coronavirus strain be recorded as the underlying cause of death, i.e. the disease or condition that initiated the train of morbid events, when it is recorded as having caused death……..

……. Deaths due to COVID-19 are included in the total for all deaths certified by a doctor. They are not included in deaths due to respiratory diseases or any of the other specified causes.”

The first reported Covid19 death was on 1 March, (Week 9).  In Week 14, one week after the peak in new infections, the peak in the first wave deaths occurred.  In this post I define the first wave of the pandemic as Weeks 9 to 21.  (The second wave commenced in Week 24.)  Figure 3 shows Covid19 deaths in context.  The duration of first wave deaths is indicated by the horizontal red line.

Figure 3: Covid19 and total deaths

Note the increase in total deaths in Weeks 12 to 15, and the insignificance of official Covid19 mortality by comparison.  (Australia closed borders on 16 March- Week 11- and began restricting movement in the days following.)

The next graph compares 2020 mortality so far with the five previous years.

Figure 4: Total Australian deaths 2015 – 2020

This year’s peak in deaths also occurred in Weeks 12 to 15, at the height of the first wave infections.

You will also note Australia’s 2020 mortality levelled off well below previous years’ figures, which usually continue rising to peak in Winter and early Spring.  Mortality figures for Weeks 27 to 52 will be very interesting.  There was an unusual early surge in 2019, and a very large increase in deaths in Winter and Spring of 2017.

I now look at excess deaths.  The ABS says:

Measuring ‘excess’ deaths

Excess mortality is an epidemiological concept typically defined as the difference between the observed number of deaths in a specified time period and the expected numbers of deaths in that same time period. Estimates of excess deaths can provide information about the burden of mortality potentially related to the COVID-19 pandemic, including deaths that are directly or indirectly attributed to COVID-19.

… counts of deaths for 2020 are compared to an average number of deaths recorded over the previous 5 years (2015-2019). These average or baseline counts serve as a proxy for the expected number of deaths, so comparisons against baseline counts can provide an indication of excess mortality. “

However, Australia’s population has increased by nearly two million from March quarter 2015 to March quarter 2020 (from 23,745,629 to 25,649,985).  This has a large impact on calculations.  Mortality rate per 1,000 head of population is a better measure. Figure 5 shows mortality rates for recent years.

Figure 5:  Australian mortality rates, 1st 26 weeks, 2015 – 2020

The method I have used is different from the ABS methodology because of the population increase and is based on mortality rates rather than absolute numbers of deaths. 

I have calculated the mortality rate per 1,000 people for each of the 2015-2019 years (using the population for the March quarters of those years), and similarly for the 2020 data.  I then multiply the average of the 2015-2019 mortality rates by the 2020 March quarter population to obtain an estimate of predicted deaths for 2020.  Subtracting this from the actual 2020 number gives an estimate of excess deaths.  An excess death figure of zero indicates the mortality rate is no different from previous years.  The next figure shows plots of actual and expected deaths for the first half of 2020.

Figure 6:  Predicted and actual deaths

Figure 7 is my plot of excess deaths to 30 June.

Figure 7: Estimated Excess Mortality

Excess and actual deaths peaked in Weeks 12 to 15, with weeks 13 and 14 nearly 200 above the expected level- but there were only 56 official Covid19 deaths in those weeks.  Officially, Covid19 was involved in 29 deaths in Week 14, 12 each in Weeks 13 and 15 and only 3 in Week 12.  It is possible that Covid19 deaths were being vastly under-reported in March. 

By the end of June estimated excess deaths were at minus 349, 11.5% below the expected number for Week 26.  Actual deaths in the first half of the year were 1,457 fewer than for the same period in 2019.

States and Territories:

Figure 8 shows actual numbers of deaths for all states and territories.

Figure 8:  2020 mortality numbers for each state

Mortality figures are dominated by New South Wales, followed by Victoria and Queensland.  Figure 9 shows excess deaths.

Figure 9:  Excess mortality by states

Smaller states had smaller changes in excess mortality, although Western Australia had a peak of 54 excess deaths in Week 13.   Figure 10 shows excess deaths for the larger states only.

Figure 10:  Excess deaths in the large eastern states

Peaks in excess deaths occurred between Weeks 9 to 17, but note earlier peaks in New South Wales and Queensland 7 or 8 weeks before the pandemic peak, with Queensland much higher than New South Wales, largely counteracted by Victoria, and a peak in Victoria in Weak 11, counteracted by New South Wales.  There was a third peak in Weeks 17 to 19, coinciding with another peak in Covid19 deaths.  Remember these numbers are additional to Covid19 deaths.  And officially Queensland had only seven Covid19 deaths, almost certainly due to under-reporting.

Age at death

Figure 11 shows the ages at which excess deaths occurred.

Figure 11:  Excess mortality by age

People aged from 0 to 44 years were not affected by the large changes in death rates in older age groups, but there was an increase in excess deaths in the 45 to 64 age bracket in Week 13, at the height of Covid19 infections, as Figure 12 shows.  That looks suspicious, but may be chance.

Figure 12:  Excess deaths for younger cohorts

The majority of excess deaths were in older age groups, as Figure 13 shows.

Figure 13:  Excess deaths for older Australians

There was a peak of 132 excess deaths in those 85 years and over in Week 14, but in Week 13 there were 146 excess deaths in those aged 65 to 84.  There were additional substantial peaks in earlier weeks as well.  It was not a good first half of the year for senior citizens, but excess deaths for all age groups were well below expected numbers by June.

Cause of death

  A death certificate lists all causes of death, and with elderly people these can be three or more.  It is very likely that a person over 85 may die of pneumonia (classified as a respiratory illness), but may also have any or all of dementia, diabetes, cerebrovascular disease, ischaemic heart disease, and cancer.  However, the ABS asks doctors to report the (one) underlying cause of death, and since earlier this year, Covid19 as the underlying cause “when it is recorded as having caused death.

 Figure 14 compares all respiratory deaths with Covid19.

Figure 14:  Covid19 and respiratory deaths

Influenza and pneumonia are subsets of respiratory illness, and the next figure shows interesting excess mortality data for 2020.

Figure15:  Excess deaths due to respiratory causes

Note the peak in respiratory deaths at the height of pandemic infections, but an earlier peak some four weeks previously.  It is likely that Covid19 was not correctly reported to the ABS by all doctors until Week 14 or 15- doctors are human too.  Since the first wave and the increase in personal hygiene, social distancing and little travel, deaths have remained well below previous years.

Figure 16:  Ischaemic heart and cerebrovascular disease excess deaths

This plot illustrates the advances in medicine:  ischaemic heart disease in 2020 had fewer deaths than expected for all of the first six months apart from a peak in Week 7.  Cerebrovascular disease (chiefly strokes) also had fewer deaths than expected except for Week 14 (so was potentially related to Covid19), and another peak in Week 24. 

Figure 17 plots excess deaths caused by the common co-morbidities of Covid19, dementia and diabetes.

Figure 17:  Excess deaths caused by dementia, diabetes, and Covid19

Diabetes and Dementia excess deaths were also higher than expected during the first wave, but there was another large surge in excess deaths with dementia as a cause weeks earlier.

Conclusions:

With the caveat that the ABS mortality figures are provisional, and putting together figures for various states, ages, and causes of death, some conclusions may be drawn:-

Either a mystery respiratory illness or undiagnosed Covid19 was widespread in the eastern states amongst elderly people weeks before the peak of first wave deaths, possibly arriving from cruise ships.

There were probably many more Covid19 deaths and infections than reported.  It is likely that the real Covid19 death toll was at least double the official tally, and possibly hundreds more.

Social distancing, good hygiene, and travel restrictions have caused a large decrease in mortality in May and June by restricting the spread of many common illnesses.  The first lockdown worked- until the Victorian fiasco.

The net effect of the first wave of the Covid19 pandemic on Australian mortality was negative.  Covid19, and public health responses to it, resulted in a lower death toll in the first half of 2020.  This lower death toll was not just in relative (mortality rate) terms but also in absolute terms: there were 1,457 fewer deaths in the first six months of this year than last year.

ABS data for the second half of the year will be released around April 2021 and will provide much better information about excess mortality for all states (and Victoria in particular), for all age groups, and for all causes.

I include an appendix with raw mortality data for 2015 -2020.

Appendix:  Raw mortality data for all causes 2015 – 2020.

Figure 18:  Respiratory mortality

Note the typical winter and spring surge in respiratory deaths, mainly due to influenza outbreaks in cold months.  There was an early surge in 2019 and a very large surge in 2017 which will skew means for those weeks.  Median mortality rate may be more appropriate than means.

Figure 19:  Ischaemic heart disease mortality

Heart disease mortality has been below previous years for most of the first 26 weeks.

Figure 20:  Cerebrovascular disease mortality

Cerebrovascular disease (stroke) deaths peaked during the first wave of Covid19 but have been mostly near the bottom of the range of previous years, with a second peak in June.

Figure 21:  Dementia mortality

Deaths with dementia as a cause have increased over the years.  A peak in dementia deaths coincided with Covid19 but deaths have been in the normal range since then.

Figure 22:  Diabetes mortality

A peak in diabetes deaths coincided with the peak in Covid19 infections and deaths, and was much higher than expected.  At the end of June deaths were in the range of previous years.

Figure 23:  Cancer mortality

Cancer deaths have increased over the years and 2020 remains within the expected range.  You may note there is no winter increase in cancer mortality.

Advertisement

Tags: , ,

3 Responses to “First Wave Covid19 Mortality in Context”

  1. billinoz Says:

    Thanks Ken for this collation of data for the first half of the year. My lady & my own personal experience this year tallies with this data: no flus or colds at all.

    We were early adopters of the prevent standards to prevent Covid – back in late February, due to Jo Nova’s very clear posts on the subject.

    But I suggest that closing the borders to everyone except Australians & permanent residents ( with compulsory quarantine for those inbound travellers ) has had a major impact on the introduction of new infectious viruses etc.

    Which does of course show up the COSTS of going back to a global interconnected world via huge flows of people across the planet.

    NB The areas of the planet which are suffering the most from Covid are precisely those areas where such huge population flows are continuing.

    Do I hear anyone thinking about this ?

    Bill

  2. Peter Newland Says:

    Have yet to digest it all. But looks very interesting. What I’ve been looking at is death rate per million vs HCQ use.
    5/Million Nigeria, large dense population, poor health system, uses hydroxychloroquine habitually for malaria, death rate a few weeks ago
    108/m Victoria at same date, refuses to allow HCQ use,
    53/m India, large denser population social distancing virtually impossible, poor health system, highest infection rate in world but low death rate, uses and encourages hydroxychloroquine HCQ used early with Zinc and one of the antibiotics to prevent hospitalisation. India ignores WHO.

    Looking at 130+ countries it looks as if HCQ use lowers death rates by a factor of about 10. But since death rates/m vary from 2 or 3 to 800+/m it’s very noisy with many unknown variables. Hence I want to compare reported infection rates with reported death rates versus HCQ use.

    Meanwhile WHO people in Australia (Prof Mary-Louise McLaws, (Epidemiology UNSW), when asked about India’s success in stopping deaths in a slum, emailed back in records time saying (directly &/or indirectly) that HCQ was no better than ‘standard treatment’ when used with very sick patients in hospitals but it was safe. When asked to clarify her ambiguity, and pointing out that those study were irrelevant to India’s use of HCQ I received no reply, and after a second nil response, I sent an open letter to media, politicians and heath ministers. Again no response.

    Tonight 22/10/2020 on ABC there was a report about HCQ double-blind trials trials in Australia – they said it could cause heart problems, blindness etc, but it might be useful.

    I think the trials are a cover-up insurance policy, waiting to earn billions from vaccines. Facebook, YouTube and Twitter all actively censor reports. Eg. America’s Front Line Doctors news conference in Washington DC reporting hundreds of successful treatment of high-risk Covid-19-infected patients was pulled after 2M views in 8 hours.

    As for heart problems, McLaws says its safe and a Professor of epidemiology in USA is on records as saying that HCQ is highly effective against Covid-19 when used early with Zinc and antibiotic: he also referenced a very large study which conclude that the excess heart death rate was 9/100,000 which is insignificant and it applied when HCQ is used with relatively high doses long-term for Lupus or Rheumatic diseases – but not relevant to Covid-19 recommended treatment regimes.

    Another Australian medical responded quickly that HCQ was unsafe and untested – and sent links to a meta-study which said just that – but when you read the actual study and check some of the studies included, they tested on HCQ without zinc and without antibiotics (specifically excluding some patients from one study that qualified for their other criteria because those patients were treated with HCQ + Zn + Antibiotic). But they had no trouble including a study that was criticised as showing that known toxic doses were actually toxic – it showed that HCQ can be dangerous. (so is salt; water; and the potato and tomato plants if used incorrectly).

    Something is ROTTEN in the state of medicine.
    References at https://tinyurl.com/CovidAnswers

  3. ngard2016 Says:

    Here’s the FED Govt’s daily update data on CV -19. All cases plus deaths etc since FEB 2020 and many graphs on just about everything we’d want to know.
    Victoria is the standout disaster of course and many graphs plus data to support the argument.

    https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/coronavirus-covid-19-current-situation-and-case-numbers

Comments are closed.


%d bloggers like this: