Archive for the ‘Energy use’ Category

Will Covid-19 Affect Carbon Dioxide Levels?

May 2, 2020

The Coronavirus pandemic has already caused a huge downturn in many industries world-wide- especially tourism, manufacturing, and transport.  Prices of oil and thermal coal have fallen dramatically.  The first impact was on China, as this plot from the World Economic Forum shows:

Fig. 1:  Industrial production in China

Industrial production has fallen by 13.5% in January and February, and exports have dropped by 17%.  While China may be recovering from the virus, the rest of the world is not and knock-on effects from low Chinese production of essential inputs will hold back recovery in other countries.

So the question is: if atmospheric concentrations of carbon dioxide and other greenhouse gases are largely a product of fossil fuel emissions, and if fossil fuel emissions decrease, will we see a reduction in the rate of increase of CO2, and if so, how much?

This is the biggest real life experiment we are ever (I hope) likely to see.


The concentration of CO2 in the atmosphere is increasing, as in Figure 2.

Fig. 2:  CO2 measurements at Mauna Loa

Cape Grim in Tasmania samples the atmosphere above the Southern Ocean and shows a similar trend, with much smaller seasonal fluctuations:

Fig. 3:  CO2 measurements at Cape Grim

But what we are vitally interested in, is how much we may expect CO2 concentration to change.  We can show change, and remove the seasonal signal, by plotting the 12 month differences, i.e., March 2020 minus March 2019.  Thus we can see how much real variation there is even without an economic downturn.  And it is huge.

Fig.4:  12 month change in CO2 concentration- Mauna Loa

Fig. 5:  12 month change in CO2 concentration- Cape Grim

Not very much smaller at Cape Grim.

However, the Mauna Loa record is the one commonly referred to.  Figure 6 shows the 12 month changes since 2015.

Fig.6:  12 month change in CO2 concentration since 2015- Mauna Loa

We will keenly watch the values for the remaining months of 2020, and then 2021.

My expectation?

I will be very surprised if there is much visible difference from previous years at all, as the following plots show.  Figure 7 shows the time series of annual global CO2 emissions and scaled up atmospheric concentration from 1965 to 2018 (the most recent data from the World Bank):

Fig. 7:  Carbon Dioxide Emissions and Concentration to 2018

Fig. 8:  Carbon Dioxide Emissions as a Function of Energy Consumption to 2018

There is a very close match between emissions and energy consumption of all types- including nuclear, hydro, and renewables.

Fig. 9:  CO2 Concentration as a Function of Carbon Dioxide Emissions to 2018

Again, it is close, they are both increasing, but with some interesting little hiccups….

So what is the relationship between change in atmospheric concentration and change in emissions?

Fig. 10:  Percentage Change in CO2 Concentration as a Function of Percentage Change in Carbon Dioxide Emissions to 2018

Not very good correlation: 0.01.

Fig. 11:  Percentage Change in Energy Use, GDP, and Carbon Dioxide Emissions to 2018

GDP fluctuates much more than energy or emissions, which are very close, and if anything tends to follow them.

Figure 12 is a time series of annual percentage change in energy and emissions and absolute change in CO2 concentration.

Fig. 12:  Percentage Change in Energy Use and Carbon Dioxide Emissions and Absolute CO2 Change to 2018

You will note that during the three occasions (1974, 1980-82, and 2008-09) when global emissions growth went negative (as much as minus two percent), CO2 concentration barely moved, and still remained positive, and on two occasions when CO2 concentration increased by 3 ppm or more (1998 and 2016), emissions increase was much reduced. 

Ah-ha, but that’s because the volume of the atmosphere is so huge compared with the amount of greenhouse gases being pumped out- according to the Global Warming Enthusiasts.

In Figure 10 I showed that there was little relationship between annual change in CO2 emissions and atmospheric concentration.  Figure 13 shows what appears to have a much greater influence on CO2 concentrations: ocean surface temperature. 

Fig. 13:  Annual Change in CO2 Concentration as a Function of Change in Sea Surface Temperature (lagged 1 year)

Remember the correlation of CO2 with emissions in Figure 10 was 0.01.  The correlation between CO2 and lagged SSTs is 0.59.  That’s a pretty devastating comparison.

Figure 14 shows how in most years SST change precedes CO2 change throughout the entire CO2 record.

Fig. 14:  Annual Change in CO2 Concentration and Sea Surface Temperatures

There is little evidence for CO2 increase causing SST increase, while there is evidence that SST change (or something closely associated with it) leads to CO2 change.   The largest changes coincide with large ENSO events.


Therefore, I expect there may be a small decrease in the rate of CO2 concentration increase, but it won’t be much, and I will be surprised if it turns negative.  A large La Nina later this year will lead to a CO2 increase a few months later, in which case there will be a larger downturn in annual CO2 change in 2021.

However, if the major cause of CO2 increase is fossil fuel consumption, there will be an extra large decrease in CO2 change in 2020 and 2021- and a noticeable jump if the global economy rebounds.

As I said, a very large real life experiment. So watch this space!

More on Energy Consumption

July 20, 2019

In my previous post was this plot showing relative penetration of renewable energy of all types (including geo-thermal, bio-fuel, and bio-waste) in world economies in 2018.

Fig. 1: Renewable energy as a percentage of total energy consumption

Renewable cons %

Many European countries have relatively large renewables penetration. (New Zealand’s position is due to geo-thermal energy providing up to 17% of its electricity.)  Australia at 5% is ahead of several very large economies, including China, the USA, and India.

However, Figure 2 shows absolute figures for renewable energy.  (All comparisons are in million tonnes of oil equivalent, taken from the 2019 BP Statistical Review of World Energy).

Fig. 2: Actual renewable energy consumption

Renewable cons MTOE

China is by far the largest consumer at about 20 times Australia’s consumption- and almost equalling Australia’s total energy consumption with renewables alone.

But China’s renewable consumption is dwarfed by fossil fuels.  China leads the world in fossil fuel consumption.

Fig. 3: Fossil fuel energy consumption

Fossil cons MTOE

Australia is a minnow.  China consumes 21 times as much fossil fuel as Australia- and New Zealand is far smaller.

Figure 4 shows each country’s fossil fuel consumption as a percentage of its total.

Fig. 4: Fossil fuel energy as a percentage of total energy consumption

Fossil cons %

A long list of countries obtain more than 95% of their total energy needs from fossil fuels.  Australia is in a group (including India) with fossil fuel accounting for 90 to 95% of energy needs.  I have made lists of countries in Figure 4 with 80 to 90%, 70 to 80%, and 60 to 70%.  France, Finland, and some former Soviet states use more than 50% fossil fuel.  Only three countries- Switzerland (47.5%), Sweden (32.6%), and Norway (31.9%)- have fossil fuel consumption less than 50%.  In all but these three, fossil fuels rule.

I now turn to nuclear energy.

Fig. 5: Nuclear energy as a percentage of total energy consumption

Nuclear cons %jpg

France leads the world with emission-free nuclear power at 38.5%, followed by Sweden at 29%.  Ukraine and Switzerland are above 20%.  China and India are well down the list.  Australia, despite enormous uranium reserves, is not in the nuclear club.

Fig. 6: Nuclear energy consumption

Nuclear cons MTOE

In absolute consumption, the USA is way in front, with twice as much consumption as its nearest rival, France.

The other major emission-free energy source is hydroelectricity.  Countries with high mountains and large rivers (and little opposition from environmentalists) can make good use of hydroelectricity.

Fig. 7: Hydro electric energy consumption

Hydro cons MTOE

China consumes nearly three times as much as Brazil or Canada.  Australia has very little potential for more than the small amount we now consume.

Fig. 8: Hydro electric energy consumption as a percentage of total energy

Hydro cons %

Norway gets 67.8% of its total consumption from hydro energy.  Switzerland and Sweden both have above 27% from hydro.

Generally speaking, large countries, even those blessed with hydro and nuclear resources, use more fossil fuels for transport.  Very small countries (Singapore, Hong Kong) have no room for nuclear, hydro or renewable facilities and so must rely on fossil fuels and imported electricity.  Countries with abundant oil and gas reserves naturally use more fossil fuels.

Finally, electricity generation.

Figure 9 shows the percentage of total electricity generation by each fuel type, ordered from least to most fossil fuel use.

Fig. 9: Electricity generation by fuel type

Electricity by fuel %

Note that fossil fuels dominate.  Brazil is the only major country where electricity generated by renewables exceeds that by fossil fuels, and then only because hydroelectricity provides 66% of all generation.  Hydro and nuclear generation are the real and proven alternatives to fossil fuels.  Only the UK and Germany have more than 30% renewable electricity, still less than fossil fuels.  As electricity generation accounts for 43.4% of energy consumption globally, and considering Figure 1, it is obvious that renewable electricity is only a small part of the energy mix.

Currently only nuclear and hydro are viable emission-free alternatives.  Solar panels and windmills cannot hope to replace fossil fuels for electricity generation, let alone for the wider economy.  It is time governments showed some leadership and acknowledged this truth.

The Renewable Energy Transition

July 11, 2019

The Australian Greens’ number one aim in their Climate Change and Energy Policy is:

“Net zero or net negative Australian greenhouse gas emissions by no later than 2040.”

And the Lowy Institute believes that Australia can set an example for the rest of the world.  In their article ‘An Australian model for the renewable-energy transition’ published on 11 March 2019, they assert that across the world “A very rapid transition to renewables is in process” and that “Most countries can follow the Australian path and transition rapidly to renewables with consequent large avoidance of future greenhouse emissions.”

Time for a reality check.

In this assessment I use energy consumption and carbon dioxide emissions data from the 2019 BP Statistical Review of World Energy.

First of all, greenhouse gas emissions.  In the BP Review,

…carbon emissions … reflect only those through consumption of oil, gas and coal for combustion related activities, and are based on ‘Default CO2 Emissions Factors for Combustion’ listed by the IPCC in its Guidelines for National Greenhouse Gas Inventories (2006).  This does not allow for any carbon that is sequestered, for other sources of carbon emissions, or for emissions of other greenhouse gases. Our data is therefore not comparable to official national emissions data.

Excluded sources would include for example cement production and land clearing.  However, given that we are focussing on the transition away from fossil fuels towards renewables, that is not a problem.

Figure 1 shows the growth in carbon dioxide emissions (from fossil fuels) since 1965.

Fig. 1: Global CO2 emissions in millions of Tonnes

CO2 emissions global

The big hitters are China, the USA, and India, who together account for more than half of the world total.

Fig. 2: CO2 emissions by the Big Three and the rest

CO2 emissions top3 rest

Note that America’s emissions peaked in 2007 and have since declined.  China’s emissions rose rapidly from 2002 to 2013.  From a low base, India’s emissions growth rate is practically exponential.

Figure 3 shows how Australia “compares”.

Fig. 3: CO2 emissions by the Big Three and Australia

CO2 emissions top3 Oz

Australia’s emissions from fossil fuels peaked in 2008.

The BP Review’s CO2 emissions data are based on fossil fuel combustion, so I now look at energy consumption since 1965.  Energy units are million tonnes of oil equivalent (MTOE), from the BP Review, “Converted on the basis of thermal equivalence assuming 38% conversion efficiency in a modern thermal power station.”

Fig. 4: Global energy consumption by fuel type in millions of tonnes of oil equivalent

World energy cons 65 to 18


Apart from 2009 (the GFC) gas has risen steadily, especially the last five years.

Since the oil shocks of the seventies and early eighties and apart from the GFC, oil has mostly enjoyed a steady rise.

Coal consumption increased rapidly from 2002 to 2013 (mostly due to Chinese expansion) followed by a small decrease to 2016.

Hydro power has seen a steady increase.

Nuclear power peaked in 2006 and declined slightly before increasing over the last six years.

Wind and Solar are in the bottom right hand corner.  Both are increasing rapidly but are dwarfed by other forms of energy.)

How close are we to the renewable energy transition?  Figures 5 to 9 show 1965 – 2018 energy consumption for conventional sources (fossil fuels plus hydro and nuclear) and the total.  The gap between conventional and total energy use is filled by renewables OF ALL TYPES- solar, wind, geothermal, bio-waste (e.g. sugar cane bagasse), and bio-mass used for electricity production, (but excluding firewood, charcoal, and dung).  I have highlighted the gaps with a little green arrow.

Fig. 5: Total and conventional energy consumption in millions of tonnes of oil equivalent

World energy cons 65 to 18 fossil hydro nuclear

In 2018, renewables of all types accounted for just 4.05% of the world’s energy, fossil fuels 83.7%.  So much for rapid transition to renewables.

The next three plots show energy consumption of the big emitters.

Fig. 6: Total and conventional energy consumption- China

CO2 emissions China

4.38% of Chinese energy came from renewables in 2018.  Nuclear and hydro power have increased enormously over the past 15 years and make up 10.35% of usage but fossil fuels (mostly coal) make up 85.3% of energy consumption.

Fig. 7: Total and conventional energy consumption- USA

CO2 emissions USA

Renewables accounted for 4.51% of US energy.  Fossil fuel and total energy consumption peaked in 2007 but has recently started increasing mostly due to gas and oil use.   (Coal has slipped from more than a quarter of the fossil fuel total in 2007 to less than a sixth in 2018.)  Fossil fuels make up 84.3% of energy use.

Fig. 8: Total and conventional energy consumption- India

CO2 emissions India

Only 3.4% of India’s energy comes from renewables.  India’s energy consumption is growing very rapidly, and 91.6% of consumption is from fossil fuels.

What of Australia, supposedly setting an example for the rest of the world to follow?

Fig. 9: Total and conventional energy consumption- Australia

CO2 emissions Australia

After years of building solar and wind farms, and at enormous expense, renewable energy of all types accounts for just 5% of Australia’s energy use- and the Greens aim to have zero net emissions in 21 years from now.

In the past 10 years, renewable consumption has increased by 5.5 million tonnes of oil equivalent- but fossil fuels have increased by 6.4 million tonnes.  While coal use has dropped by 12 million tonnes, this has been more than replaced by 18.4 million tonnes of oil and gas.  That’s not much of a rapid transition.

Figure 10 shows in order renewables consumption in all countries.  Remember, this includes all types including geothermal energy and bio-mass.

Fig. 10: Comparative penetration of renewables

Renewable cons %

Australia at 5 % renewable consumption is 19th and ahead of the big emitters, the USA, China, and India.

Perhaps the Extinction Rebellion activists who are unhappy with lack of action against climate change in Germany, the UK, and Australia, could glue themselves to the roadways in China, India, or Russia.

There is no rapid renewable energy transition.   Oil, coal, and gas are cheap and readily available and are powering growth in developing economies.  At some time in the future there will not be enough accessible fossil fuel to sustain the world’s economies alone; uranium too will one day be in short supply.  However, necessity and technological innovation, not legislation, will drive the adoption of alternative fuels.

Rumours of the imminent death of fossil fuels appear to be greatly exaggerated (with apologies to Mark Twain).