Archive for the ‘Rainfall’ Category

Unprecedented South Australian Weather!

January 22, 2017

(and it has been like that for 178 years!)

There were more blackouts in South Australia a couple of days ago following a wild storm.  In a report in the Adelaide Advertiser, SA Power Networks spokesperson Paul Roberts is quoted:

“This is just another example of the unprecedented weather in the last six months,” Mr Roberts said, referring to bouts of wild weather that have hit power supplies hard this summer and the preceding spring.

21mm of rain was measured at the Kent Town gauge.

Just how “unprecedented” is Adelaide’s weather over the past few months?  I couldn’t find any records for the number of severe storms, so for a proxy I have made do with rainfall data from West Terrace and Kent Town in Adelaide.  The overlap period has very similar rainfall recordings so I joined the two series to give a record starting on 1 January 1839.  That’s 178 years of data.

When thinking about “unprecedented”, we need to check amount, intensity, and frequency.

Firstly, a few plots to give some context.  How unprecedented was Thursday’s storm?

Fig. 1: Rainfall for the first 21 days of January compared with Days 1 – 21 of every year

adelaide-rain-21-jan

Note Thursday’s rainfall had less rain than four previous occasions on this day alone, and 20 or so in previous Januarys.

Fig. 2: Rainfall for each day of 2016 compared with each day of every year:

adelaide-rain-2016

Note the December storm had extreme rain (for Adelaide) but not a record.

Amount and intensity has been higher in many previous years.  141.5mm was recorded on 7 February 1925.

Fig. 3: 7 day average rainfall over the years:

adelaide-rain-2016-7d-avg

The topmost dot shows the maximum 7 day average for each year.  2016 got to 13.4mm on 4 October- multiply by 7 to get the weekly total rain.  Note there were many wet and dry periods all through the record.

21mm of rain fell in a severe storm on Thursday, so I arbitrarily chose 20mm as my criterion for heavy rainfall in one day as a probable indicator of stormy weather.  I am the first to admit that 20mm might fall steadily all day and not be at all associated with wild winds, and wild winds can occur without any rain, but bear with me.

Fig. 4: Rain over 20mm throughout the year:

adelaide-rain-2016-above-20

There seems to be no increase in amount or intensity of rain at any time of the year.

Fig. 5: Frequency:

adelaide-rain-2016-cnt-above-20

Note 2016 had 7 days with above 20mm in 24 hours.  That’s the most since… 2000, when there were 8 days- and many previous years had 7 or 8 days, and 1889 had 9.  So no increase in frequency.

However, Mr Roberts was referring to the last six months, spring and summer.  So let’s look at rain events over 20mm from July to December, firstly amounts recorded:

Fig. 6: July to December Rain over 20mm:

adelaide-rain-above-20-last-6m

Nothing unusual about 2016.

Fig. 7:  Frequency of heavy rain July – December:

adelaide-rain-2016-cnt-above-20-last-6m

1973, 1978, and 1992 had the same or more days with over 20mm.

I now restrict the count to spring and summer only:

Fig. 8:  Spring and Summer frequency:

adelaide-rain-2016-cnt-above-20-last-4m

Not unprecedented: 1992 had one more.  Add in last Thursday’s event to make them equal.

Conclusion

Adelaide has a long climate record, showing daily rainfall has varied greatly over the years.  There is no recent increase in amount, intensity, or frequency for the whole year, or for the last six months or four months.  Spring and summer rainfall in 2016 was not unprecedented, and to the extent that spring and summer falls over 20mm are a proxy for storms, there is no evidence for an increase in wild weather.  This is normal.  Get used to it, Mr Roberts, and make sure the electricity network can cope.

 

Advertisements

Land and Sea Temperature: South West Australia

November 29, 2016

This year, the south-west of Western Australia has recorded some unexpectedly low temperatures.  Has this been due to rainfall, cloud, winds, or the cooler than normal Leeuwin Current and Sea Surface Temperatures in the South West Region?

In this post I examine maximum temperature and rainfall data for Winter in South-Western Australia, and Sea Surface Temperature data for the South West Region, all straight from the Bureau of Meteorology’s Climate Change time series page .

All temperature data are in degrees Celsius anomalies from the 1961-90 average.

Figure 1 is a map showing the various Sea Surface Temperature monitoring regions around Australia.

Fig. 1

sst-regions

The Southwest Region is just to the west and southwest of the Southwest climate region, and winter south westerlies impact this part of the continent first.  2016’s winter has seen maxima drop sharply.  In fact, it was the coldest winter since 1993:

Fig. 2:  Southwestern Australia Winter TMax Anomalies

sw-tmax

There is a relationship between rainfall and Tmax- as rain goes up, Tmax goes down, so here south west rainfall is inverted and scaled down by 100:

Fig. 3:  TMax and Rain:

sw-tmax-rain

The next plot shows TMax and the South West Region’s Sea Surface Temperature anomalies (SST):

Fig. 4:  TMax & SST:

sw-tmax-sst

Again, related: both have strong warming from the 1970s.  Next I check for whether there was a real change in direction in the 1970s, and if so, when.  To do this I use CuSums.

Fig. 5:  CuSums of Winter TMax and SST compared:

sw-tmax-sst-cusums

Both have a distinct change point: 1975, with SST warming since, but TMax appears to have a step up, with another change point at 1993 with strong warming since.  Rainfall however shows a different picture:

Fig. 6:  CuSums of Winter Rainfall

sw-rain-cusums

Note the major change at 1968 (a step down: see Figure 3), another at 1975 with increasing rain to the next change point at 2000, after which rain rapidly decreases.

I now plot TMax against rainfall and SST to see which has the greater influence.  First, Rain:

Fig. 7:  TMax vs Rain:

sw-tmax-vs-rain

100mm more rain is associated with about 0.5C lower TMax, but R-squared is only 0.22.

Fig. 8:  TMax vs SST:

sw-tmax-vs-sst

A one degree increase in SST is associated with more than 1.1C increase in TMax, and R-squared is above 0.51- a much closer fit, but still little better than fifty-fifty.

TMax is affected by rain, but more by SSTs.

I now look at data since the major change points in the 1975 winter.  The next three figures show trends in SST, Rain, and TMax.

Fig. 9:  Trends in SST:

sw-sst-trends

Warming since 1975 of +1.48C/ 100 years.

Fig. 10:  Trends in Rainfall:

sw-rain-trends

Decreasing since 1975 at 89mm per 100 years (and much more from 2000).

Fig. 11:  Trends in TMax:

sw-tmax-trends

Warming since 1975 at +2.14C per 100 years.

Detrending the data allows us to see where any of the winters “bucks the trend”.  In the following plots, the line at zero represents the trend as shown above.

Fig. 12:  SST Detrended:

sw-sst-detrended-75-to-16

Fig. 13:  Rainfall Detrended:

sw-rain-detrended-75-to-16

Fig. 14:  TMax Detrended:

sw-tmax-detrended-75-to-16

Note that SST in 2016 is just below trend, but still above the 1961-90 average.  Rainfall is only slightly above trend, and still below average.  However TMax is well below trend, and well below average, showing the greatest 12 month drop in temperatures of any winter since 1975.

My conclusions (and you are welcome to comment, dispute, and suggest your own):

  • Maximum temperatures in winter in Southwestern Australia are affected by rainfall, but to a much larger extent by Sea Surface Temperature of the South West Region.
  • The large decrease in winter temperature this year cannot be explained by rainfall or sea surface temperature.  Cloudiness may be a factor, but no 2016 data are publicly available.  Stronger winds blowing from further south may be responsible.

DTR, Cloud, and Rainfall

September 19, 2016

In my last brief post I showed how Diurnal Temperature Range is related to rainfall in Northern and Southern Australia in Northern and Southern wet seasons (which correspond roughly to summer and winter).

In this post I show the relationship between DTR and daytime cloud, and between rainfall and daytime cloud, and something very peculiar about South-Western Australia.

All data are taken straight from the Bureau’s Climate Change Time Series page.

DTR is affected by rainfall through Tmax being cooled by cloud albedo, evaporation and transpiration, and Tmin warmed by night cloud and humidity.  There must be a relationship between clouds and rain, although it is (rarely) possible to have rain falling from a clear sky with no visible cloud.  Rain is easily measured in standard rain gauges.  Cloud is calculated by trained observers, and we only have data for 9 a.m., 3 p.m., and daytime cloud.  The data give no indication of cloud type, thickness, or altitude, just amount of sky covered (in oktas, or eighths).

Here I show scatterplots for Australia as a whole annually, and for Northern, South-Eastern, and South-Western Australia in summer and winter.  I calculate both rainfall and cloud as percentage differences from their means.

Fig. 1:  DTR vs Rain for Australia annually:

dtr-vs-rain-oz-ann

Fig. 2:  DTR vs Cloud for Australia annually:

dtr-vs-cloud-oz-ann

Notice much better correlation between DTR and Cloud.

Now let’s look at the relationship between rainfall and daytime cloud.

Fig. 3:  Percentage difference in Rainfall vs percentage difference in Cloud for Australia annually:

rain-v-cloud-oz-ann

Note a 10% increase in cloud cover could be expected to be associated with a 25% increase in rainfall.

Fig. 4: Percentage difference in Rainfall vs percentage difference in Cloud North Australian summers:

rain-v-cloud-n-oz-summ

Fig. 5: Percentage difference in Rainfall vs percentage difference in Cloud North Australian winters:

Note how rainfall in the North Australian dry season varies proportionally more, but has a slightly lower correlation (>0.8 vs 0.9).

Fig. 6: Percentage difference in Rainfall vs percentage difference in Cloud South-East Australian summers:

rain-v-cloud-se-oz-summ

Note the much greater effect of cloud on rainfall in the southern dry season.

Fig. 7: Percentage difference in Rainfall vs percentage difference in Cloud South-East Australian winters:

rain-v-cloud-se-oz-wint

Now, get ready for a surprise.

Fig. 8: Percentage difference in Rainfall vs percentage difference in Cloud South-West Australian summers:

rain-v-cloud-sw-oz-summ

Fig. 9: Percentage difference in Rainfall vs percentage difference in Cloud South-West Australian winters:

rain-v-cloud-sw-oz-wint

What’s going on in the south-west?

Here’s how DTR compares:

Fig. 10:  DTR vs percentage difference in rainfall: South-west Australia

dtr-vs-rain-sw-oz-ann

Similar relationship to everywhere else.

Fig. 11:  DTR vs percentage difference in cloud cover: South-west Australia

dtr-vs-cloud-sw-oz-ann

And this graph clearly shows the relationship between rain and cloud is closer in the wet seasons, but also clearly shows that South-west Australia is an extreme outlier.

Fig. 12:  R-squared comparison between rain and cloud in wet and dry seasons

chart-seasonal-r2

Why the huge difference?  There is no relationship between cloud and rain in south-west Australia, unlike everywhere else.  The South-West has seen a marked decline in rainfall since the late 1960s, but an increase in cloud cover.  It seems counter intuitive, but there you go.

Any suggestions are welcome.