Archive for the ‘Rainfall’ Category

Australian Temperature- Satellites or Surface Stations?

May 13, 2022

For years we have been very sceptical about the official Bureau of Meteorology (BOM) temperature record which is based on 104 surface stations in the ACORN-SAT (Acorn) network.  In this post I look at one of the main reasons for doubting the veracity of the surface record- the increasing divergence from the satellite record.

First up I should say that the two records should not necessarily agree, because they measure two completely different things.  Surface stations measure the temperature of the air 1.2 metres above the ground and report the highest and lowest one second samples each day at 104 locations.  These are combined in a grid average to give monthly, seasonal, and annual temperatures.  Satellites measure temperatures of the atmosphere from the ground to many kilometres up, every second, over a wide area for each pass.  These are similarly combined by algorithms to calculate a monthly average for (in this case) the land area of Australia’s Temperature of the Lower Troposphere (TLT). 

They are both useful for different purposes but are not easily compared.  Because minimum surface temperatures poorly match TLT, mean surface temperature is also a poor match.  Maxima are a better match, but still not perfect.

For this post I use data from the University of Alabama (Huntsville) (UAH) which calculates anomalies from 1991 to 2020 means.  I have converted Acorn data from anomalies from 1961-1990 means, to anomalies from 1991-2020 means, to match.

Figure 1 shows monthly Acorn maxima data and UAH means from December 1978.

Figure 1: Monthly Surface Tmax and UAH data

Although surface maxima have a much larger range than TLT anomalies, they plainly follow similar trajectories.  12 month running means smooth the data and allow easier visual comparison.

Figure 2: Running 12 Month Means: Surface Tmax and UAH data

Similar, but different at several times.   Annual means show that in some years Tmax and TLT are close to identical, while in other years they have large differences.

Figure 3: Annual Means: Surface Tmax and UAH data

In 2015 I showed the reason for these differences (but not the difference in trends).  The differences between the two datasets are very largely due to variations in rainfall.  In wet years surface maxima are relatively much cooler than TLT; in dry years surface maxima are much warmer.  In Figure 4 I have calculated rainfall anomalies scaled down by a factor of 20 and inverted, to compare with the difference between Tmax and TLT.

Figure 4: Running 12 month Means: Surface Tmax minus UAH and Inverted Rainfall

The match is close.  Figure 5 shows annual values, and trend lines.

Figure 5: Annual Means: Surface Tmax minus UAH and Inverted Rainfall

While annual rain has been slightly increasing (it’s inverted, remember) the relative difference between surface temperature and atmospheric temperature has been increasing at a rate of one degree per hundred years.  That’s odd.  Figure 6 shows the relationship between the temperature difference and rainfall.

Figure 6: Annual Surface Tmax minus UAH versus Scaled Rainfall

For every extra 20mm of rainfall, the difference between surface maxima and TLT decreases by 0.85 degrees Celsius.  The trend lines in Figure 5 should be close to parallel, not diverging.

As well, as rainfall increases, Tmax should decrease, as Figure 7 shows.

Figure 7: Surface Tmax as a Product of Rain

But as we saw in Figure 3, Tmax is increasing faster than UAH.

Furthermore, as surface Tmax increases, TLT should be increasing as well, which it is, but at a slower rate.

Figure 8:  Atmospheric Temperature as a Product of Surface Tmax

Is the atmospheric temperature lagging behind surface temperature?  Figure 9 shows the last two years of monthly values.

Figure 9:  Monthly Atmospheric Temperature and Surface Tmax, January 2020-March 2022

The values are mostly synchronous, with sometimes a delay in one or the other of one month.  (Remember, we are comparing data from 104 stations scattered across the continent, with that of the atmosphere with constantly changing and circulating winds).  When the land warms, the atmosphere warms with it; when the land cools, so does the atmosphere.

Conclusion:

Tmax should not be increasing faster than atmospheric temperature.  There is no real delay in any temperature change, as the atmosphere is heated each day by the land.  Therefore it appears that there must be some fault with the maximum temperatures reported by ACORN-SAT, which appears to be warming too rapidly.

Explanation of the mechanism for rainfall moderation of surface-atmospheric temperature differences:

In wet years more moisture carried upwards condenses, releasing heat, thus warming the atmosphere, while the surface is cooled by cloud cover, evaporation, and transpiration.  In dry years much less moisture is convected, so less heat is released in the atmosphere, while the surface is hotter because of less cloud cover and less evaporation and transpiration.  Thus dry years have a greater relative difference between Tmax and TLT than wet years.

The only energy source is solar radiation heating the land surface in daylight hours, which in turn heats the atmosphere by conduction and convection.  At night as radiation to space rapidly cools the earth, convection also rapidly decreases, so maxima, not minima, are responsible for the relationship with TLT. 

A complication is that in summer (and more so in very wet La Nina years) large volumes of very moist air from the tropical seas to the north converge over northern Australia and penetrate even into southern Australia.  This warm moist air cannot heat the surface but through condensation transfers heat to the upper atmosphere- therefore the difference between surface and atmosphere is even smaller.

Is Australia Getting Harder To Live In?

March 23, 2022

Update: see link below kindly supplied by Big M

According to Scomo it is.

And are natural disasters becoming worse and more frequent?

If you listen to or look at commentary in the mass media and social media, largely fuelled by politicians and journalists with no contact with nature and no life experience, you might think so.

The Conversation says:

It’s too soon to say whether the current floods are directly linked to climate change. But we know such disasters are becoming more frequent and severe as the climate heats up.

Time for a reality check.

Flood and fire and famine are the three great normals of Australia, as so well expressed by Dorothea McKellar in My Country, and we in the north also have cyclones.   

First, floods.  Brisbane was hit hard by floods last month.  Figure 1 is from a previous post, showing historic floods in the Brisbane River with the 2022 flood inserted.  No cause for alarm there.

Figure 1: Historic Brisbane Flood heights 

What about fatalities?  Figure 2 shows the 2022 floods compared with some historic floods from all over Australia.  Fatalities are totalled if several floods occurred in one year.

Figure 2:  Death tolls of flooding events

Are flood disasters getting deadlier? No.

Fatalities and housing damage are the result of people living in flood prone areas- or from being trapped in vehicles in rising waters.   After the 1916 flood, the people of Clermont in Queensland moved their town to higher ground- without any government assistance.  This photo from Bonzle shows the Commercial Hotel being moved on log rollers by a steam traction engine.  The Commercial is still standing- I’ve had a few coldies there.

Figure 3: Moving the Commercial Hotel to higher ground

And no one asked where Billy Hughes was.

What about fires?

Figure 4 shows the area of land burnt by bushfires by notable fires across Australia.  I have marked some fires that are fairly well known- but does anyone mention the fires of the 1960s and 1970s?  These were in largely savannah country of WA, Queensland, and the NT.

Figure 4:  Area Burnt by Bushfires

Figure 5 shows fatalities due to bushfires.

Figure 5:  Bushfire Fatalities 1920-2020

Despite the terrible 2009 fires, fatalities due to bushfires in the last 100 years have been trending down.  Lessons must be learned from these tragic events.  We should remember that fire is part of the Australian bush.  Many fatalities occur where housing is surrounded by bushland, with poor escape routes.

The downtrend in fire fatalities is even more apparent when you consider Australia’s population has grown enormously since 1920.  The following plot shows how the risk of death by bushfire has changed.

Figure 6:  Bushfire Fatalities per 1,000 people 1920-2020

No, by no measure are bushfires getting worse, or making Australia harder to live in.

Droughts are also in decline across most of Australia.  The following plots use BOM data.

Figure 7:  Percentage of Land in Severe Drought (lowest 10% of rainfall)

Even though 2019 was an extremely dry year, over 120 years the area of land in drought is decreasing at the rate of 0.23% per decade.

The only areas where drought has increased are Southwestern Western Australia, Victoria, and southern South Australia. 

In southern Australia as a whole, there is no trend in droughts, even with the 2018-2019 drought.

Decadal averages are an excellent way of showing long term patterns.  In southern Australia the worst period of long lasting dry years was the 60 years from 1920 to 1980.

Figure 8:  Percentage of Land in Severe Drought- Decadal Averages Southern Australia

But are dry periods getting drier, and wet periods wetter?  And are dry areas getting drier, and wet areas wetter?  Here are long term rainfall records for Sydney, Cairns (very wet) and Alice Springs (very dry), and Adelaide (drying trend) again with decadal means.  Values are anomalies from months of overlap of weather stations, in millimetres of rain.

Figure 9:  Decadal Mean Rainfall- Sydney

The three major droughts stand out, as does the major reset of the 1950s.  Note the decreasing values to the 1940s, and again from the 1960s.  There is no indication of wet periods getting wetter and dry periods drier.

Figure 10:  Decadal Mean Rainfall- Cairns

Figure 11:  Decadal Mean Rainfall- Alice Springs

It seems that dry periods are getting wetter at Cairns and Alice Springs, and apart from the 1970s-1980s, wet periods show no great difference.

Figure 12:  Decadal Mean Rainfall- Adelaide

Here we see the gradual fall off in rainfall in southern SA, gradually since the 1930s but more rapidly since the 1970s.  The shift in the Southern Annular Mode has caused drying in southern parts of the continent.  It is too early to draw any conclusions from that.

The alternately wet – dry feature of Australian climate is obvious from all the above plots.  However, wet periods are not getting wetter, and dry periods are not getting drier.

What about cyclones?  Here is a plot straight from the Bureau:

Figure 13:  Tropical Cyclones 1970-2021

Cyclones are NOT becoming more frequent or more severe.  The trend is clearly downwards.

Finally, heatwaves.  In reality we have no idea, as the temperature record managed by the Bureau is so bastardised- as shown here, here, here, here, here, and here.  We just don’t know, no matter what they claim.

Those who live in the cities, who have little contact with nature, and who have no knowledge of the history of Australia’s climate, will accept whatever they’re told about natural disasters as gospel.  The truth is different.

Scomo has nothing to worry about (apart from the next election).  Australia is NOT getting harder to live in: floods, fires, droughts, and cyclones are NOT getting worse or more frequent. 

UPDATE: Big M has kindly supplied this link, which I missed.

https://www.abc.net.au/news/2021-05-26/australias-hidden-history-of-megadroughts/100160174

The 1760s WA drought seems to match data from the Barrier Reef showing a 30 year drought in NQ.

How Unusual Is All This Rain We’ve Had?

March 3, 2022

Yesterday, 2nd March, ABC weather reporter Kate Doyle posed this question on the ABC website about the recent rain event in SE Queensland and Northern NSW.

Her answer to the above question was:

Very unusual.

The rainfall totals from this event have been staggering. 

From 9am Thursday to 9am Monday three stations recorded over a metre of rain:

– 1637mm at Mount Glorious, QLD 
– 1180mm at Pomona, QLD
– 1094mm at Bracken Ridge “

She goes on to say:  “South-east Queensland and northern NSW are historically flood prone and have certainly flooded before but this event is definitely different from those we have seen in the past.”  And of course climate change is involved.

Time for a reality check. 

My answer to Kate’s question:  Not very unusual at all.

I went looking at Climate Data Online for four day rainfall totals over one metre, to compare with the recent totals above at Mount Glorious, Pomona, and Bracken Ridge. 

For a start, Pomona’s BOM station has been closed for years, and Bracken Ridge is not listed at all, so those reports are from rain gauges external to the BOM network and can’t be checked. 

That’s OK.  In about half an hour I found the following four day rainfall records.

Crohamhurst4/2/18931963.6mm
Yandina3/2/18931597.8mm
Tully Sugar Mill13/02/19271421.3mm
Palmwoods4/2/18931244.6mm
Buderim3/2/18931150.3mm
Bloomsbury20/01/19701141.8mm
Dalrymple Heights6/04/19891141mm
Innisfail3/04/19111075.8mm
Nambour11/1/18981013mm

1893 was a wet year!  Crohamhurst had 2023.8 in five days, and Brisbane had three floods in two weeks in February and another in June.

And there is no such thing as a “rain bomb”, a term invented to make it sound unprecedented.  This was an entirely natural and normal rain event.  Slow moving tropical lows drift south every few years in the wet season, producing a large proportion of Queensland’s average rainfall.

Floods have affected Brisbane and surrounds since before European settlement.  The Bureau has an excellent compilation of accounts of past floods at

http://www.bom.gov.au/qld/flood/fld_history/brisbane_history.shtml

It includes this graphic showing the height of known floods.  I have added an indication of the height of the 2022 flood.

Here are some notable Brisbane floods:

1825       a flood probably as high as the 1893 flood

1841       8.43m

1844       about1.2 metres lower than 1841

1864       ?

1887       ?

1889       ?

1890       ?

1893       8.35m

“              8.09m

“              ?

“              ?

1908       4.48m

1974       5.45m

2011       4.46m

2022       3.85m

Every flood is different- water backs up higher in unexpected places, or gets away faster, so for many people this flood was worse than 2011.  However it is beyond any doubt that this flood, heartbreaking as it was for many people, could have been much worse.  It was nowhere near as big as several in the past.  Wivenhoe Dam worked as planned this time, which greatly lessened the impact.

Another thing worth remembering:  floods were more frequent and higher in the 19th Century than they have been in the last 100 years.

ABC journalists need to do a lot more research.

Diurnal Temperature Range and the Australian Temperature Record: More Evidence

January 19, 2022

In an earlier post, I demonstrated through analysing Diurnal Temperature Range (DTR) that the Bureau of Meteorology is either incompetent or has knowingly allowed inaccurate data to garble the record.

A couple of readers suggested avenues for deeper analysis. 

Siliggy asked, “Is the exaggerated difference now caused by the deletion of old hot maximums and or whole old long warmer records?”

Graeme No. 3 asked, “Is there any way of extracting seasonal figures from this composition?”

This post seeks to answer both, and the short answer is “Yes”.

Using BOM Time Series data (from the thoroughly adjusted Acorn dataset) I have looked at data for Spring, Summer, Autumn, and Winter (although those seasons lose their meaning the further north you go).

DTR is very much governed by rainfall differences as shown by this plot.

Figure 1:  Winter DTR anomalies plotted against rainfall anomalies- all years 1910-2020

This shows that in winter DTR decreases with increasing rainfall.  The R squared value of 0.79 means that for the whole period, rainfall explained DTR 79% of the time on average.  However, the average conceals the long term changes in the relationship.

To show this, I simply calculated running 10 year correlations between DTR and Rainfall anomalies for each season, and squared these to show the “R squared” value.  This is a good rule of thumb indicator for how well DTR matches rainfall over 10 year periods.  A value of 0.5 indicates only half of the DTR for that decade can be explained by rainfall alone.  As you will see in the following figures, there are plenty of 10 year periods when the relationship was 0.9 or better, meaning it is ideally possible for 90% of DTR variation to be explained by rainfall.  Here are the results.

Figure 2:  Spring Running R-squared values: DTR vs Rain

There was a good relationship before 1930.  In the decades from then to the mid-1970s it was much worse, and very poor in the decade to 1946. It was poor again in the decade to 2001, and the 10 years to 2020 shows another smaller dip, showing something not quite right with 2020.

Figure 3: Summer Running R-squared values: DTR vs Rain

Summer values were very poor before the 1960s, especially the decades to 1944 and 1961, and dipped again in the 1990s.

Figure 4:  Autumn Running R-squared values: DTR vs Rain

The DTR/Rain relationship was very poor in the decades to 1928, and again before 2001.  The recent decade has also been poor- less than half of DTR to 2020 can be explained by rainfall.

Figure 5:  Winter Running R-squared values: DTR vs Rain

The DTR/rainfall relationship was fairly good, apart from two short episodes, until the 1990s.

I now turn to the northern half of the continent.

A large area of Northern Australia is dominated by just two seasons, wet and dry.  Here is the plot of northern DTR vs Rain for the wet season (October to April).

Figure 6:  Northern Australia Wet Season Running R-squared values: DTR vs Rain

Apart from the 1950s, the late 1970s-early 1980s, and 1998 to 2020, the DTR : Rainfall relationship is very poor, with a long period in the 1930s and 1940s in which rainfall explains less than half of DTR variation (only 13% in the decade to 1943). 

Because the northern half of Australia accounts for the bulk of Australian rainfall, and the wet season is from October to April, this perhaps explains the problems in spring, summer, and autumn for the whole country.

We can get some clues as to the reasons by comparing long term average maximum temperatures with inverted rain (as wet years are cool and dry years are warm).

Figure 7:  Northern Australia Wet Season Decadal Maxima and Rain

The divergence before 1972 and after 2001 is obvious.

The above plots show how poorly DTR (and therefore temperature, from which it is derived) has matched rainfall over the past 111 years.  Low correlations indicate something other than rainfall was influencing temperatures.

In reply to Siliggy, who asked “Is the exaggerated difference now caused by the deletion of old hot maximums and or whole old long warmer records?” the answer appears to be: both, however Figure 7 shows old temperatures (before 1972) appear incorrect, but recent temperatures are at fault too.

The mismatch shows that the Acorn temperature record is not to be trusted as an indicator of past temperatures- and even recent ones.

How Accurate Is Australia’s Temperature Record? Part 2

January 19, 2021

In my last post I showed that Australia wide the Tmax ~ rainfall relationship has remained constant for the past 110 years (as it should) but Tmax reported in the Acorn dataset has increased by more than 1.5 degrees Celsius relative to rainfall.  Consequently, the ACORN-SAT temperature dataset is an unreliable record of Australia’s maximum temperatures.

Of course there are other aspects of climate besides rainfall.   In this post I will compare annual ACORN-SAT Tmax data with:

Rainfall

Sea Surface Temperatures (SST)

The Southern Annular Mode (SAM)

Cloudiness

Evaporation

all for the Australian region.

I have sourced all data from the Bureau of Meteorology’s Climate time Series pages

except for SAM data from Marshall, Gareth & National Center for Atmospheric Research Staff (Eds). Last modified 19 Mar 2018. “The Climate Data Guide: Marshall Southern Annular Mode (SAM) Index (Station-based).” 

Tmax, Rainfall, and SST data are from 1910; SAM and Daytime Cloud from 1957, and Pan Evaporation from 1975.  Cloud observations apparently ceased after 2014, and Evaporation after 2017, possibly because of staffing cuts.

Because Pan Evaporation data are only available from 1975 and are reported as anomalies from 1975 to 2004 means, I have recalculated Tmax, Rainfall, SST, SAM, and Daytime Cloud anomalies for the same period so all data are directly comparable.

As in the previous post, I have calculated decadal averages for all indicators to show broad long term climate changes.  Decadal averages show how indicators perform over longer periods.  Each point in the figures below shows the average of the 10 years to that point.  This can then indicate times of sudden shifts or questionable data. (For example in Figure 1 SAM (the green line) makes a sudden jump in 2015.  Was this a climate shift or a data problem?)

Figure 1 shows the 10 year means for all climate indicators.  I have scaled Rain and SST to match Tmax at 2019, Cloud and SAM to match Tmax at 1966, and Evaporation to match Tmax in 1984.  Rain and Cloud are inverted as they have an inverse relationship with temperature.

Figure 1:  10 Year Means of Climate Indicators

Tmax has stayed close to SST until 2001.  Clearly Tmax has increased far more than any of the others, especially since 2001.

The next plots show the difference between decadal averages of Tmax and the other indicators.  Zero difference means an excellent relationship with Tmax.

Figure 2:  Difference: 10 Year Means of Tmax minus Rain and SSTs.

Starting from 1919 (zero difference), Rainfall is close to Tmax until 1957, after which Tmax takes off until it is 1.6 degrees Celsius greater than expected in the 10 years to 2020.  Tmax diverges from SST values in 2001 and in 2020 is 0.7 degrees greater than expected.

In Figure 3, Rain, SST, SAM, and Cloudiness are scaled to match Tmax at 1966.

Figure 3:  Difference: 10 Year Means of Tmax minus Rain, SST, SAM, and Cloud

Figure 3 shows how closely Rain and Cloud are related: differences from Tmax are almost identical.  Compared with 1966, Tmax is 1.3 degrees more than rainfall would suggest in the 10 years to 2020.  SST and the SAM index are less different from Tmax but Tmax divergence is still clear.  You may notice that Tmax differences from all climate indicators seem to change at similar times, apart from SAM in 2015.

In Figure 4, all indicators are scaled to match Tmax at 1984.

Figure 4:  Difference: 10 Year Means of Tmax minus Rain, SST, SAM, Cloud and Evaporation

Differences increase rapidly after 2001, so in Figure 5 indicators match Tmax at 2001.

Figure 5:  Difference: 10 Year Means of Tmax minus Rain, SST, SAM, Cloud and Evaporation

There appears to be a problem with SAM in 2015, and it’s a shame that the BOM have discontinued Cloud and Evaporation observations.  In the last 20 years, it is obvious that Tmax has diverged from other indicators.

Conclusion:

All factors- Rainfall, SAM, SST, Clouds, and Pan Evaporation- point to a clear divergence of temperature nationwide, especially in the last 20 years.  In other words, ACORN-SAT, our official record of temperatures, is unreliable.

How Accurate Is Australia’s Temperature Record? Part 1

January 7, 2021

In my last post I showed that maximum temperature (Tmax) as reported by ACORN-SAT (Australian Climate Observations Reference Network-Surface Air Temperature) appears to be responsible for the growing divergence of the difference between Tmax and tropospheric temperatures from Australia’s rainfall.

In this post I show how Tmax is related to rainfall, and show that while this relationship holds for discrete periods throughout the last 110 years, Tmax has apparently diverged from what we would expect.  In other words, the Acorn Tmax record is faulty and unreliable.

For much of this analysis I am indebted to Dr Bill Johnston who has posted a number of papers at Bomwatch using the relationship between Tmax and rainfall.

At any land based location annual maximum temperature varies with rainfall: wet years are cooler, dry years are warmer.  More rainfall (with accompanying clouds that reflect solar radiation) brings cooler air to the ground; provides more moisture in the air, streams, waterholes, and the soil which cools by evaporation; causes vegetation to grow, the extra vegetation shading the ground and retaining moisture, with transpiration providing further cooling; and in moist conditions deep convective overturning moves vast amounts of water and heat high into the troposphere- especially evident in thunderstorms.  Less rainfall means the opposite: more solar radiation reaches the ground with fewer clouds and less vegetation; there is less moisture available to evaporate; less vegetation growth and transpiration; and much less heat is transferred to the troposphere through convective overturning.

While more rainfall than the landscape can hold results in runoff in rivers and streams, thus removing some moisture from the immediate area, this affects large regions only in tropical coastal catchments- the Kimberleys, the Gulf rivers, the Burdekin and Fitzroy.  Across the bulk of Australia there is very little discharge of water to the oceans.  In the Murray-Darling Basin, on average less than 0.005% of rainfall is discharged from the Murray mouth. (BOM rainfall data and 1891-1985 discharge data from Simpson et al (1993))

This temperature ~ rainfall relationship is particularly evident in desert areas far from any marine influence.  Alice Springs provides a good example.  Figure 1 shows how annual maximum temperatures at Alice Springs Airport vary with rainfall since 1997.  Data are from ACORN.

Fig. 1: Tmax and Rainfall, Alice Springs

The slope of the trend line shows that for every extra millimetre of rain, Tmax falls by 0.0047 of a degree Celsius, which is about half a degree less for every 100 mm.  The R-squared value shows that there is a good fit for the data- 79% of temperature change is due to rainfall.

I said above that this relationship holds for land locations.  An island, with a little land surrounded by water, is mostly affected by sea temperature and wind direction.  Locations near the coast are also affected by marine influence.  At Amberley in south-east Queensland daily maximum temperature can be moderated by the time of arrival of a sea breeze or whether it arrives at all.  (Site changes also can change Tmax recorded.)

Fig. 2: Tmax and Rainfall, Amberley

Further inland, the relationship is strong: at Bathurst, there is 0.4C temperature variation per 100mm of rainfall and 61% of temperature change is due to rainfall alone.

Fig. 3: Tmax and Rainfall, Bathurst

The BOM has sophisticated algorithms for area averaging temperature and rainfall across Australia and provide national climate records back to 1900 for rainfall and 1910 for maxima.  Averaged across Australia individual station idiosyncrasies are submerged so that the 1997 to 2019 relationship between Tmax and rainfall is very strong (and similar to that of Alice Springs):

Fig. 4: Tmax and Rainfall, Australia 1997-2019

However, the relationship is not strong throughout the whole record:

Fig. 5: Tmax and Rainfall, Australia 1910-2019

The relationship from 1910 to 2019 is poor.

In the next figure I compare the Tmax – rainfall relationships for the first 10 years of the record with the last 10 years.

Fig. 6: Tmax and Rainfall, Australia, first and last decades

The trendlines are almost exactly parallel, with tight fits, showing strong relationships 100 years apart- but the trendline for 2010 to 2019 is about 1.7 degrees above that for 1910 – 1919.  How can that be?

It is possible to compare rainfall and temperature throughout the last 110 years.  In the next figure, rainfall is inverted and scaled down so as to match Tmax at 1910.

Fig. 7: Tmax and Inverted Scaled Rain, Australia

Running 10 year means allow us to see long term patterns of rainfall and temperature more easily:

Fig. 8: Tmax and Inverted Scaled Rain, Decadal Means, Australia

Rainfall has increased over the last 110 years (despite what you might hear in the media), and so apparently have maximum temperatures.  In the above figures Tmax and rainfall track roughly together until the mid-1950s, then Tmax takes off.

I calculated an “index” of temperature ~ rainfall variation by subtracting scaled, inverted rainfall from Tmax, commencing at zero in 1919.  This allows us to identify when temperature appears to diverge markedly from inverted rainfall:

Fig. 9: Index of Temperature ~ Rainfall Variation: Tmax minus Inverted Scaled Rain, Decadal Means, Australia

There is a small increase from the mid-1950s, but the really large divergence commences in the 1970s, with the decade from 1973 to 1982 about 0.6 units above the decade to 1972.  The index decreases to 1995, then there is another steep increase to 2007, and a final surge to 2019.

This index alone shows how poorly the official temperature record represents the temperature of the past.

 While there are other times, in the next figures I compare four periods: 1910 to 1972, 1973 to 1995, 1996 to 2007, and 2008 to 2019.  Here I use annual data.

Fig. 10: Tmax and Rainfall, Australia, four periods

Again, trendlines are almost parallel with similar slopes, showing that the Tmax ~ rainfall relationship is fairly constant for all periods- (about 0.5C per 100mm after 1995 and about 0.4C per 100mm before 1995).  However, the lines are separated.  Temperature for each later period is higher than the ones preceding, such that the temperature recorded now is about 1.5 degrees Celsius higher than it would have been for similar rainfall before 1973. And rainfall has increased in that time.

Global Warming Enthusiasts and apologists for the BOM will claim that these breaks between separate periods are real and caused by changes in circulation patterns due to climate change- in particular the Southern Annular Mode.  That will be the subject of Part 2.

Whatever the reasons, Australia wide the Tmax ~ rainfall relationship has remained constant for the past 110 years (as it should) but the temperatures reported in the Acorn dataset have increased by more than 1.5 degrees Celsius relative to rainfall.

Conclusion:

The ACORN-SAT temperature dataset is an unreliable record of Australia’s maximum temperatures.

Townsville Rainfall In Context

February 11, 2019

The rain event which caused massive floods in Townsville (and fearful stock losses in the north-west) has now ended.  There have been some who have made further political capital out of this disaster by linking it to climate change.

According to Independent Australia, a “progressive journal”,

The City of Townsville, with some 20% of its suburban zones under water today (6 February 2019), might now be a model for the world — for possible climate change impacts and handling them. 

These days, the very heavy falls have been happening more frequently — for example, in 2007, 2009 and then in 2010.

Time for a reality check.

This has indeed been a record breaking event for Townsville.  A few graphs will illustrate.  Townsville airport has had its wettest 14 day period since 1941, averaging over 100mm per day.

Fig. 1:  14 day rainfall

Tville 14d rainfall

It has also broken the record for rainfall over 31 days:

Fig. 2:  31 day rainfall

Tville 31d rainfall

And with the wet season far from over, it is very likely to break the 121 day rainfall record.

Fig. 3:  121 day rainfall

Tville 121d rainfall

Townsville’s rain is very seasonal.  Annual rainfall averages about 1127mm, and half of that falls in January and February, with another quarter in December and March, so a plot of 121 day rainfall captures the relative strength of wet seasons over the years.  There doesn’t appear to be any recent increase in wet season strength.  What is interesting is there are periods of wetter and drier years, which is more plainly seen in a plot of decadal rainfall.

 Fig. 4:  Decadal rainfall at Townsville

Tville decadal rainfall

Rainfall appears to be in a decreasing trend.

But what about the claim for greater frequency of very heavy rain events?  Heavy rain events are usually short and intense, so three day rainfall will also show relative frequency and intensity.

Fig. 5:  Three day rainfall

Tville 3d rainfall

The “Night of Noah” in 1998 is obvious, and there was another intense event in 1953.  But there is NO trend.  (The calculated trend is zero.)  Intense events are not more frequent.  Similarly, the number of days per year recording 100mm of rain shows zero trend, even though there have been eight already this year.

Fig. 6:  Count of days per year with over 100mm of rain

Tville days over 100mm

There is no climate change signal in Townsville’s rain record.

Now, to show how different locations can lead to completely different interpretations of trends in climate, I turn to two locations in wetter parts of the tropics that I have some knowledge of.  I lived for many years not far from Pleystowe and Sarina Sugar Mills near Mackay, which are about 30 km apart.  Sarina appears to have an increasing trend in rainfall:

Fig. 7:  Decadal rainfall at Sarina

Sarina decadal rainfall

While Pleystowe shows no trend.

Fig. 8:  Decadal rainfall at Pleystowe

Pleystowe decadal rainfall

Notice the similar patterns of wetter and drier periods in Townsville, Pleystowe, and Sarina.

And incidentally, the most intense and highest rainfall events in these locations occurred many years ago, in 1990-91, the 1970s, the 1950s, and 1918.  As with the recent Townsville flood, these occurred when the monsoon trough, with embedded decaying cyclones, lingered overhead for many days or even weeks.

The Townsville flood was not due to climate change, but to a frequent North Queensland phenomenon- an intense monsoon trough stuck in one place for too long.  This was an unusually intense and long lasting example, but such events are not more frequent or more intense.

Drought and Climate Change Part 2: Rainfall deficiency

September 7, 2018

In my last post, I looked at long term rainfall trends across Southern, South Eastern, and South Western Australia, and found no cause for alarm at recent rainfall decline.  Droughts can occur at any time and cause much hardship across wide parts of the country.  Global Warming Enthusiasts are gnashing their teeth, believing man-made climate change is making droughts worse.  Greg Jericho in the Guardian wrote last Thursday 30th August, “If you are a prime minister going out to the rural areas and you’re not talking about climate change, and you’re not suggesting that droughts are more likely to occur and thus farmers need to take greater responsibility, then you are failing in your job.”

Are droughts really “more likely to occur” with climate change, and is there any evidence they are becoming more frequent, more intense, and more widespread with global warming?

The Bureau of Meteorology says:

Drought in general means acute water shortage.

The Bureau’s drought maps highlight areas considered to be suffering from a serious or severe rainfall deficiency…. for three months or more….

……

  • Serious rainfall deficiency: rainfall lies above the lowest five per cent of recorded rainfall but below the lowest ten per cent (decile range 1) for the period in question,
  • Severe rainfall deficiency: rainfall is among the lowest five per cent for the period in question.”

This map of meteorological drought (areas in the lowest ten and five percent of 12 months rainfall to 31 August) shows the extent across Australia:

Fig. 1:  Recent 12 month Rainfall Deficiency Australia

12m drought map

Parts of central and southern inland Queensland, parts of eastern South Australia, many parts of New South Wales, and small areas of Victoria are in drought.  Notice that the droughted areas are separated by areas that are not in drought.

But, but… all of NSW is in drought, isn’t it?

100% of NSW has been drought declared, and 54.7% of Queensland, and indeed some parts are in a very bad way.   But “drought declaration” is the term the media, politicians, and general public don’t understand.  They assume that because 100% of NSW is drought declared, this means all of NSW is in drought.  Not so.  Drought declaration is a political or at best administrative instrument for giving drought assistance to farmers and communities.  Some areas of Queensland that have not yet been drought declared really are in the grip of drought; some “drought declared” areas of NSW are not in drought, as this map of NSW (6 months March to August) shows:

Fig. 2: 6 month Rainfall deficiency NSW

NSW map 6m

Of course the blank areas have had below average rainfall, which may turn into full blown drought, so the NSW government is being proactive.  However, they are not at this time in meteorological drought with serious or severe rainfall deficiency.

Trends in Drought Incidence

In the bigger picture, how widespread, how intense, how long lasting, and how frequent are droughts becoming in Australia?  For this analysis I use monthly rainfall data from 1900 to July 2018 from the Bureau of Meteorology at their Climate Change page, and calculate the number of months where the rainfall total of the previous 12, 18, 24, or 36 months shows severe deficiency (in the lowest 5 percent of all months since 1900) or serious deficiency (in the lowest 10 percent).  (I am looking at droughts that last at least 12 months, not just short dry spells, and 12 months total rainfall includes rain in all seasons.)

I do this for various regions, as shown on the map below.

Fig. 3:  Australian Regions

Climate regions

I have plotted the number of consecutive months where the 12, 18, 24, and 36 month totals are in the lowest 5% and 10% of their respective values since 1900, and calculated the trend in months per century of increase or decrease. There are 96 plots, so I will only show a couple of examples, and summarise the results in Table 1 below.

Table 1:  Trends in Drought Incidence (Months per 100 Years) for various Australian Regions

Trend table

A negative trend indicates decreasing drought incidence, shaded green; a positive trend indicates increasing incidence, shaded pink.

Australia wide, and in the regions of Northern and Southern Australia and the Murray Darling Basin, and South Australia as a whole, since 1900 droughts of all lengths have become less frequent, and because these are broad regions, less widespread.  There is no evidence that climate change is making droughts more likely to occur, except for smaller areas (Victoria, Tasmania, and SW Australia) which have an increasing frequency of droughts of all lengths.

36 month dry periods are more frequent in SW Australia, SE Australia, Eastern Australia, Tasmania, Victoria, (and interestingly Queensland, but only for <10% deficiency).

Some examples will illustrate the complexity of the picture.

Fig. 4:  Number of consecutive months per calendar year of 12 months severe rain deficiency: Australia

12m 5% Aust

Fig. 5:  Periods of 36 months serious rain deficiency: Australia

36m 10% Aust

In the past droughts of all lengths and severity were more widespread across Australia.

Fig. 6:  Periods of 36 months severe rain deficiency: Southern Australia

36m 5% Sthn Aust

Similarly, multi-year periods of severe rain deficiency were much more frequent and widespread across Southern Australia before 1950.  In the last 50 years there has been only one month where the 36 month total was in the lowest 5th percentile.

Fig. 7:  Periods of 12 months severe rain deficiency: New South Wales

12m 5% NSW

Fig. 8:  Periods of 36 months severe rain deficiency: New South Wales

36m 5% NSW

Fig. 9:  Periods of 12 months serious rain deficiency: New South Wales

12m 10% MDB

Fig. 10:  Periods of 36 months serious rain deficiency: New South Wales

36m 10% NSW

Across NSW, 4 months of 2018 had 12 month totals in the serious deficiency range, but none in the severe range.  Droughts of all severity and duration have become less frequent and widespread.  The Millennium Drought lasted longer but was less severe than the Federation Drought.

The Murray-Darling Basin lies across four states including most of NSW, and is Australia’s premier food and fibre producing region.  The current drought is affecting many areas in this region.

Fig. 10:  Periods of 12 months severe rain deficiency: Murray-Darling Basin

12m 5% MDB

Fig. 11:  Periods of 12 months serious rain deficiency: Murray-Darling Basin

12m 10% MDB

Fig. 12:  Periods of 36 months serious rain deficiency: Murray-Darling Basin

36m 10% MDB

We can conclude from these plots of the Murray-Darling Basin that this drought is patchy, and while nasty, is not the most intense or long lasting even in living memory, let alone on record, and that droughts are becoming less frequent and less widespread.

Fig. 13:  Periods of 36 months severe rain deficiency: Queensland

36m 5% Qld

Fig. 14:  Periods of 36 months serious rain deficiency: Queensland

36m 10% Qld

Queensland has little trend in frequency of drought with severe deficiency over three years but less severe droughts have been more frequent- due to the droughts of the 1990s and the Millennium drought.

Fig. 15:  Periods of 36 months serious rain deficiency: Victoria

36m 10% Vic

The Millennium Drought stands out as the longest period of widespread serious rain deficiency.

Fig. 16:  Periods of 36 months serious rain deficiency: South-West Australia

36m 10% SW Oz

Here we see that all but one month of all the 36 month periods of serious rain deficiency have occurred since 1970, reflecting the marked drying trend.  This really is an example of climate changing.

Winter rainfall

Fig. 17:  Winter Rainfall Deciles across Australia, 2018

winter rain 2018

According to the Climate Council, “Climate change has contributed to a southward shift in weather systems that typically bring cool season rainfall to southern Australia.”  However the usual areas affected by this southwards shift, Tasmania, south-west Victoria, southern South Australia, and most of the south-west of Western Australia, have had an average to above average winter.  Droughted areas are to the north.   The southwards shift of weather systems caused by Climate Change cannot be claimed to have any part in this drought.

Drought is a dreadful calamity wherever and whenever it occurs.  And on top of other difficulties in Queensland is the bureaucratic approval process under Vegetation Management regulations before graziers can push mulga to feed starving stock.

This drought may get worse if a full El Nino develops.  It is unlikely to break before six months or even 18 months.  By then it will be much more severe and widespread.  However, climate change has not caused this drought.  While there is evidence for increasing drought frequency and thus likelihood of more drought in the future in Tasmania, southern Victoria, southern South Australia, and the south-west of Western Australia, across the rest of Australia there is strong evidence that droughts have become less frequent, less severe, less widespread, and shorter.  If climate change is claimed as the cause of increasing droughts in the far southern regions, then climate change must also be causing less frequent droughts across the vast bulk of Australia, where droughts are always “likely to occur”, but not “more likely”.

Drought and Climate Change Part 1: Long Term Rainfall

September 1, 2018

The current drought conditions in New South Wales and large parts of Queensland are getting a lot of media attention, and of course the usual suspects are linking it to climate change and our apparently “unambitious” emissions targets in the NEG.  But are droughts really becoming “the new normal”, and are they becoming more frequent, more intense, and more widespread with global warming?

There are two aspects to consider: long term rainfall trends in various regions, and periods of rainfall deficiency.  In this post I will look at long term rainfall, and Part 2 will look at rainfall deficiency i.e. drought incidence.

Long term rainfall trends

Everyone “knows” southern Australia is getting drier.  Paul West in Feeding Australia Pt 2 on the ABC says there has been a 28% decrease in rainfall over the past 30 years.  The Climate Council says “Over the past 30 years, there has been a discernible decrease in rainfall across southern Australia.” That’s their headline; in the details the Climate Council’s June 2018 Fact Sheet says:

“Climate change has contributed to a southward shift in weather systems that typically bring cool season rainfall to southern Australia. Since the 1970s late autumn and early winter rainfall has decreased by 15 percent in southeast Australia, and Western Australia’s southwest region has experienced a 15 percent decline in cool season rainfall.”

Both are true, but both are only half true, and in fact the ABC and the Climate Council as usual lie by omission.

The whole story is more complex but shows a completely different, and much less dramatic picture.  Using data for cool season (April- September) rainfall from the Bureau of Meteorology we can check on different time periods.

Fig. 1:  Cool season rainfall, Southern Australia, 1988-2017

Cool rain Sth Oz 19882017

Yes, if this is what Paul West based his statement on, 2017 had about 28% less rain than in 1988.  I hope he didn’t- comparing single years would be pretty bad science.  However there has been a marked decrease in cool season rainfall over this period, so the Climate Council is quite correct.

However, Figure 2 shows the big picture- since 1900.

Fig. 2: Cool season rainfall, Southern Australia, 1900-2017

Cool rain Sth Oz 19002017

Oops! Rainfall has in fact increased over southern Australia.

The reason for the current gnashing of teeth is that “living memory” only goes back about 70 years, and we are comparing current conditions with those of a few decades ago.  Figure 3 shows the average rainfall for the 10 year periods up to 2017.

Fig. 3: 10 year average Cool season rainfall, Southern Australia, 1900-2017

Cool rain Sth Oz 19002017 10yrs

As you can see, the average rainfall of the 10 years 2008 to 2017 was about 7% less than in the 1950s, 1970s, 1980s, and 1990s, but more than the 1920s and 1930s, and nearly 10% more than the 10 years to 1947.  Of the 10 decades before this one, five had less rain and five had more.  Southern Australian cool season rainfall is not “the new normal”, it is in fact “the old normal”.

Let’s now look at South-East Australia, below 33 degrees South and east of 135 degrees East.

Fig. 4: Cool season rainfall, South-Eastern Australia, 1988-2017

Cool rain SE Oz 19882017

Again there is an obvious decrease in rain over the last 30 years.

Fig. 5: Cool season rainfall, South-Eastern Australia, 1900-2017

Cool rain SE Oz 19002017

There has been a small decrease in cool season rainfall over the whole 118 years.  Again there was a marked step up in rainfall from the mid-1940s.  The plot of 10 year averages shows this more clearly:

Fig. 6: 10 year average cool season rainfall, South-Eastern Australia, 1900-2017

Cool rain SE Oz 19002017 10yrs

There was a decreasing trend up to the 1940s, and a decreasing trend from the 1950s to now.  The current 30 to 40 year decrease is nothing new.

However, rainfall records for individual sites go back much longer.  What do these show?  Here is a plot of monthly rainfall for all months at Penola, in South Australia, starting in 1863:

Fig. 7: Monthly rainfall (all months January 1863 – December 2017) at Penola, S.A.

Penola rain monthly

A very long term decreasing trend.  Running 12 month totals show wetter and drier periods:

Fig. 8: 12 month running total rainfall (all months January 1863 – December 2017) at Penola, S.A.

Penola rain 12m

There were very severe droughts around World War 1 and the late 1960s, but a big step up in the 1950s.  This is more obvious in a plot of 10 year totals:

Fig. 8: 120 month running total rainfall (all months January 1863 – December 2017) at Penola, S.A.

Penola rain 120m

This site shows a very long term rainfall decrease, complicated by droughts and strings of wetter years, and a huge step up in the middle of last century.  This site is one of many of varying lengths in the High Quality Rainfall dataset.  Nearly all show the mid-century step up, some show a small long term increase, some show a small long term decrease.

I amalgamated all 84 stations, and here are the plots for all months. Firstly, the number of stations reporting:

Fig. 9: Count of all stations in S.E. Australia reporting, all months

All SE sites Count

There are a number of long term sites.  There were 50 sites in 1898, as in 2017 (several had not yet reported January 2018).

Note: the following plots are of naïve means: there is no area averaging.

Fig. 10: S.E. Australia monthly rainfall (all months)

SE Oz all months

Note a small increase.  Now 12 month running totals of these means:

Fig. 11:  S.E. Australia 12 month rainfall (all months)

SE Oz 12 months

Now the 10 year running total of monthly means, but since 1898 when the number of stations was the same as now:

Fig. 12:  S.E. Australia 120 month rainfall (all months)

SE Oz 120 months 1898

The mid-century step up is obvious, with a decline since then.  The 10 year rainfall to December 2017 is about what it was a century ago.

I now turn to South West Australia.

Fig. 13: Cool season rainfall, South-Western Australia, 1988-2017

Cool rain SW Oz 19882017

A very serious decline since 1988.

Fig. 14: Cool season rainfall, South-Western Australia, 1900-2017

Cool rain Sw Oz 19002017

As you can see, the decline has been around since 1900, but with a marked step down starting in 1968, with a steep but uneven decline since then.  10 year averages show this clearly.

Fig. 14: 10 year average cool season rainfall, South-Western Australia, 1900-2017

Cool rain SW Oz 19002017 10yrs

Conclusion:

The long term data show a complex picture of long term cool season rainfall decline in south-west and some parts of south-east Australia, while southern Australia as a whole shows a very small increase.  It is true that rainfall has declined, as the Climate Council and ABC claim, over the past 30 and 40 years in many parts, but that is only half the story.  The whole story is much less dramatic.  Rainfall has been declining for a long time in WA, and in south-east Australia has been declining in two stages, separated by a large step up in rainfall in the middle of last century.

The current low rainfall is not “the new normal” but entirely consistent with “the old normal” and should be seen as just plain “normal”.  This is Australia.  Get used to it.

Unprecedented South Australian Weather!

January 22, 2017

(and it has been like that for 178 years!)

There were more blackouts in South Australia a couple of days ago following a wild storm.  In a report in the Adelaide Advertiser, SA Power Networks spokesperson Paul Roberts is quoted:

“This is just another example of the unprecedented weather in the last six months,” Mr Roberts said, referring to bouts of wild weather that have hit power supplies hard this summer and the preceding spring.

21mm of rain was measured at the Kent Town gauge.

Just how “unprecedented” is Adelaide’s weather over the past few months?  I couldn’t find any records for the number of severe storms, so for a proxy I have made do with rainfall data from West Terrace and Kent Town in Adelaide.  The overlap period has very similar rainfall recordings so I joined the two series to give a record starting on 1 January 1839.  That’s 178 years of data.

When thinking about “unprecedented”, we need to check amount, intensity, and frequency.

Firstly, a few plots to give some context.  How unprecedented was Thursday’s storm?

Fig. 1: Rainfall for the first 21 days of January compared with Days 1 – 21 of every year

adelaide-rain-21-jan

Note Thursday’s rainfall had less rain than four previous occasions on this day alone, and 20 or so in previous Januarys.

Fig. 2: Rainfall for each day of 2016 compared with each day of every year:

adelaide-rain-2016

Note the December storm had extreme rain (for Adelaide) but not a record.

Amount and intensity has been higher in many previous years.  141.5mm was recorded on 7 February 1925.

Fig. 3: 7 day average rainfall over the years:

adelaide-rain-2016-7d-avg

The topmost dot shows the maximum 7 day average for each year.  2016 got to 13.4mm on 4 October- multiply by 7 to get the weekly total rain.  Note there were many wet and dry periods all through the record.

21mm of rain fell in a severe storm on Thursday, so I arbitrarily chose 20mm as my criterion for heavy rainfall in one day as a probable indicator of stormy weather.  I am the first to admit that 20mm might fall steadily all day and not be at all associated with wild winds, and wild winds can occur without any rain, but bear with me.

Fig. 4: Rain over 20mm throughout the year:

adelaide-rain-2016-above-20

There seems to be no increase in amount or intensity of rain at any time of the year.

Fig. 5: Frequency:

adelaide-rain-2016-cnt-above-20

Note 2016 had 7 days with above 20mm in 24 hours.  That’s the most since… 2000, when there were 8 days- and many previous years had 7 or 8 days, and 1889 had 9.  So no increase in frequency.

However, Mr Roberts was referring to the last six months, spring and summer.  So let’s look at rain events over 20mm from July to December, firstly amounts recorded:

Fig. 6: July to December Rain over 20mm:

adelaide-rain-above-20-last-6m

Nothing unusual about 2016.

Fig. 7:  Frequency of heavy rain July – December:

adelaide-rain-2016-cnt-above-20-last-6m

1973, 1978, and 1992 had the same or more days with over 20mm.

I now restrict the count to spring and summer only:

Fig. 8:  Spring and Summer frequency:

adelaide-rain-2016-cnt-above-20-last-4m

Not unprecedented: 1992 had one more.  Add in last Thursday’s event to make them equal.

Conclusion

Adelaide has a long climate record, showing daily rainfall has varied greatly over the years.  There is no recent increase in amount, intensity, or frequency for the whole year, or for the last six months or four months.  Spring and summer rainfall in 2016 was not unprecedented, and to the extent that spring and summer falls over 20mm are a proxy for storms, there is no evidence for an increase in wild weather.  This is normal.  Get used to it, Mr Roberts, and make sure the electricity network can cope.