Posts Tagged ‘CO2’

More Footprint Comparisons

June 18, 2019

In my previous post I showed different ways of comparing carbon dioxide emissions.

Here are some more, unashamedly with an Australian focus, in different formats.

As in my last post I use data from the Global Carbon Atlas for fossil fuel emissions for 2017 (the most recent data available), and Gross Domestic Product (GDP) data from the World Bank, also for 2017. GDP for each nation is calculated in current US dollars.

Percentages

Figure 1 shows cumulative percentages of 2017 fossil fuel emissions for all 202 countries with available data.

Fig. 1:  Cumulative CO2 emissions 2017 expressed as percentages

Globalco2 cum %

China, the USA, and India are the big hitters.  China produces 28.5% on its own.  Australia, in 16th place, produces 1.2% of global emissions, a bit behind Canada at 1.66%, and just ahead of the UK at 1.12%.  France and Italy are just over 1% each.  The remaining 183 countries each produce less than 1% – many much less.

Earth Hours

Earth Hour, where some people show how virtuous they are by switching off their lights for an hour in order to reduce emissions, might provide another way of comparing emissions.  I next compare emissions by units of “Earth Hours”.  One Australian Earth Hour is the amount of CO2 emissions reduced when:

Across Australia, all lights powered by fossil fuels; all stoves, fridges, air conditioners, and other appliances; all battery chargers; all street lights, traffic lights, and emergency lighting; all hospitals, schools, shopping centres, and telecommunications including computers; all mining operations; all transport- cars, trucks, trains, and aircraft; all farming operations; all water pumping; all manufacturing industry small and large, including steel and aluminium; all building and construction:  are shut down for one hour.

That is one Australian Earth Hour.

One Chinese Earth Hour is equal to 23.82 Australian Earth Hour units- Australia could run for 23 hours and 48 minutes on the equivalent amount of emissions. The value for America in Australian Earth Hours is 12 hours and 45 minutes; India, 6 hours; Russia, 4 hours; Japan, 2 hours 54 minutes. The value for the UK is 55 minutes and 53 seconds worth of Australian emissions output.

At the other end of the scale, El Salvador’s hourly emissions would last Australia for one minute.  Tuvalu’s total emissions are the equivalent of one tenth of one second of Australia’s emissions.

Efficiency

Here’s another idea.  Australia is the world’s 13th largest economy, and achieves this with emissions per dollar of GDP that put us in 105th place.  For all nations the average CO2 emissions per US dollar of GDP is 485 grams per dollar.  What if all countries were as efficient as Australia?  That is, they all had the same amount of emissions as Australia: 312 grams of CO2 per dollar of GDP.

Figure 2 shows what global emissions would look like if all nations were as efficient as Australia.

Fig. 2:  Global fossil fuel emissions currently and at Australia’s rate per dollar GDP

Global Oz efficiency

Or, to put it another way, Figure 3 shows the effect on the global economy for the same level of emissions.

Fig. 3:  Global GDP currently and at Australia’s emissions rate per dollar GDP

Global GDP Oz efficiency

That’s a potential increase of 37.7%.

Conclusion

Australia is punching above its weight in regard to efficiency of fossil fuel emissions per dollar of GDP.  Our carbon footprint is tiny compared with the big three- China, the USA, and India.  While there is always room for us to improve, if every country behaved as well as we do, the world would be a better place.

Advertisements

Carbon Footprints in Perspective

June 16, 2019

According to a Lowy poll before our recent “climate change election”, apparently 89% of Australians were in favour of action on climate change.  They got it wrong of course, but there is still much gnashing of teeth over the size of our carbon footprint, especially in regard to our emissions per capita.   According to the University of Melbourne’s Climate Energy College, “Australia’s per-capita emissions remain the highest among its key trading partners”.

So how does Australia rate in the world of carbon emissions?

In this post I use data from the Global Carbon Atlas for fossil fuel emissions for 2017 (the most recent data available), and population, land area, and Gross Domestic Product (GDP) data from the World Bank, also for 2017. GDP for each nation is calculated in current US dollars.

Figure 1 shows 2017 fossil fuel emissions for all 202 countries with available data, in millions of tonnes of carbon dioxide.

Fig. 1:  Fossil fuel emissions 2017

CO2top5

In 2017 China was way in front with close to 10 billion tonnes of CO2 emitted, distantly followed by the USA, with India, Russia, and Japan well behind.  Australia was in 16th place, following Germany, Iran, Saudi Arabia, South Korea, Canada, Mexico, Indonesia, Brazil, South Africa, and Turkey.  At the other end of the scale the tiny Pacific nation of Tuvalu emitted only 13,000 tonnes of CO2.

In absolute terms our 413 million Tonnes of CO2 emissions are mediocre.  In the 20 years from 1998 to 2017, Australia’s carbon footprint increased by 78.4 million tonnes.  China’s increased by 6,573 million tonnes.  We’re not in the race, and it is blindingly obvious that however much we reduce our emissions we will have almost zero impact on the global total.

That is the reason that global warming enthusiasts in academia and the media promote the idea of per capita emissions- because we look worse that way.

Fig. 2:  2017 emissions per capita

CO2percap

It is certainly true that we emit larger amounts of CO2 per person compared with our major trading partners.  Fossil fuel is dirt cheap in oil rich nations, but in poor African countries each person emits less than a quarter of a Tonne of CO2 from fossil fuels per year.  There, firewood is the fuel of necessity, with severe consequences for health and the environment.  It is interesting that New Caledonia emits more per head than Australia.

Why does Australia hold this position?  The amount of wealth created by fossil fuel use is a measure of productivity and efficiency.  Figure 3 shows how countries rate in efficiency- how much CO2 is emitted for each US dollar in GDP.

Fig. 3:  2017 emissions per US $ GDP

CO2per$

Less is better.  Poorer countries that burn a lot of fossil fuel, and larger nations that do the same- including Russia, India, China, South Korea, and Indonesia- have less efficient economies than western nations including Canada, Australia, and the USA.  Small countries, especially those with nuclear and renewable energy, rich island nations, and poor African nations using very little fossil fuel make up the best.  Australia has a productive economy with historically cheap fossil fuels- but the most important reason for our relatively high emissions per capita is our size.

Figure 4, a comparison of carbon intensity, is an alternative way of comparing emissions, and because it takes into account the natural advantages of other advanced economies, demonstrates our carbon efficiency much better than population or GDP comparisons.

Fig. 4: 2017 emissions per land area

CO2persqkm

Australia, in 144th position, is followed only by countries with much smaller economies, and none of them apart from Iceland and Greenland are European.  All of our major trading partners, and many others, have much higher carbon intensity than Australia.  All Pacific Island nations, except for Papua New Guinea, Vanuatu, and the Solomon Islands, have higher carbon intensity as well.

Why?  Our economy is diffused across a wide brown land.  Even our cities are relatively thinly populated by world standards.  Production centres and markets are vast distances apart.  Russia, China, Canada, the USA, and Brazil are all larger in area than Australia.  Even so, our emissions are much less: Australia- 53.7 Tonnes per square kilometre; Brazil- 61.5; Canada- 63; Russia- 103.4; USA- 576; China- 1,048 Tonnes per square kilometre.

Don’t preach to us- Australia is a carbon sink by comparison with most other countries.

*****

As an appendix, here are three plots showing Australia’s relative position in the world.

Fig. 5:  2017 population

Poptop5

Fig. 6:  2017 GDP

GDPtop5

Fig. 7:  Land area

Areatop5

Australia is sixth in land area, 13th in GDP, and 53rd in population.  We are a large, under-populated, productive nation.  Naturally we have fossil fuel emissions to match.

Another Inconvenient Pause

January 15, 2019

The Pause in global temperatures may be past, but here is another, longer Pause, and one that is much more difficult to explain: at ideal Australian sites, increasing greenhouse gas concentrations have led to a decrease in downwelling longwave radiation- the very opposite of expectations.

Basically, the theory behind the enhanced greenhouse effect is that the increase in concentrations of anthropogenic greenhouse gases leads to an increase in downwelling infra-red (IR) radiation, which causes surface warming.

Is there evidence for increasing downwelling IR in recent years, as atmospheric concentration of carbon dioxide has been rapidly rising?

The authors of Skeptical Science think so:

Surface measurements of downward longwave radiation

A compilation of surface measurements of downward longwave radiation from 1973 to 2008 find an increasing trend of more longwave radiation returning to earth, attributed to increases in air temperature, humidity and atmospheric carbon dioxide (Wang 2009). More regional studies such as an examination of downward longwave radiation over the central Alps find that downward longwave radiation is increasing due to an enhanced greenhouse effect (Philipona 2004).

Time for a reality check.

The links in the above quote do not work for me, so I use data available for Australia.

Greenhouse gas concentrations are measured at Cape Grim in north-west Tasmania.  According to the CSIRO,

The Cape Grim station is positioned just south of the isolated north-west tip (Woolnorth Point) of Tasmania. It is in an important site, as the air sampled arrives at Cape Grim after long trajectories over the Southern Ocean, under conditions described as ‘baseline’. This baseline air is representative of a large area of the Southern Hemisphere, unaffected by regional pollution sources (there are no nearby cities or industry that would contaminate the air quality).

Fig. 1:  Cape Grim Baseline Air Pollution Station (looking almost directly south)

c grim photo

Fig. 2:  CO2 concentration, Cape Grim.

co2 c grim

Fig. 3:  Methane concentration, Cape Grim.

ch4 graph

Fig. 4:  Nitrous oxide concentration, Cape Grim.

n2o graph

There is no doubt that concentrations of greenhouse gases have been increasing.  We should therefore expect to see some increase in downwelling longwave radiation.

Downwelling IR data are available from the Bureau of Meteorology which maintains a database of monthly 1 minute solar data from a network of stations around Australia, including Cape Grim.

What better location than Cape Grim to study the effects of greenhouse gas concentrations from month to month on readings of downwelling IR.  The instruments are within metres of each other under “baseline” conditions at a pristine site.

The data include 1 minute terrestrial irradiance (i.e. downwelling IR striking a horizontal surface) from which I calculated mean daily IR for each month.  To remove the seasonal signal, I calculate anomalies from monthly means.

Fig. 5:  Downwelling longwave radiation anomalies, Cape Grim.

ir over time capegrim

Oops! IR has been decreasing for the full length of the record, 20 years (May 1998 to June 2018).   And monthly IR anomalies plotted against monthly CO2 anomalies show a similar story:

Fig. 6:  Downwelling longwave radiation anomalies, Cape Grim.

ir vs co2 cgrim

In the most suitable location in Australia, from May 1998 to June 2018 there has been no increase in downwelling infra-red radiation, despite an increase of 41.556 ppm atmospheric concentration of carbon dioxide, 104.15 ppb of methane, and 14.472 ppb of nitrous oxide.

So what factors do influence downwelling IR and thus surface warming or cooling?  Together with solar radiation, that other greenhouse gas, H2O.  Gaseous H2O (humidity) and clouds formed of liquid and ice H2O are by far the major players in returning heat to the surface.

We see this in a plot of downwelling IR against cloudiness (from nearby Marrawa).

Fig. 7:  Downwelling IR anomalies vs Cloudiness, Cape Grim.

ir vs cloud capegrim

Daytime cloudiness (an average of observations at 9.00 a.m. and 3.00 p.m.) increases downwelling IR.  We have no data for night time cloudiness unfortunately.

To illustrate the irrelevance of carbon dioxide, here is a plot of anomalies of solar radiation (global irradiance), downwelling infra-red radiation, daytime cloudiness, and carbon dioxide concentration at Cape Grim over the past 20 years.

Fig. 8:  Anomalies of IR, Global Irradiance, CO2, and Daytime Cloud at Cape Grim 1998-2018

98 to 18 full range capegrim ir global co2 cloud anoms

And zooming in on 2008 to 2010:

Fig. 9:  Anomalies of IR, Global Irradiance, CO2, and Daytime Cloud at Cape Grim 2008-2010

98 to 18 2008 2010 capegrim ir global co2 cloud anoms

There is a feedback mechanism: cloudiness inhibits daytime temperature and increases IR and nighttime temperature; decreased cloudiness means decreased IR; but less cloud and higher daytime temperature will increase IR as well if sustained; and higher IR also increases daytime temperature.  Further, sustained decrease in global radiation due to increased cloud cools the surface, thus decreasing IR.

Carbon dioxide concentration changes have no detectable effect.

A desert location, where humidity is typically very low and rain and cloudiness very infrequent, would also be ideal for checking on downwelling IR from carbon dioxide.  Alice Springs in the central desert is such a location with available irradiance data.

At Alice Springs as well, since March 1995 downwelling IR has been decreasing.

Fig. 10:  Downwelling longwave radiation anomalies, Alice Springs.

ir over time alice

The relationship between cloud and IR is even more evident.

Fig. 11:  Anomalies of IR, Global Irradiance, CO2, and Daytime Cloud at Alice Springs 2008-2010

2008 2010 alice ir global co2 cloud anoms

Fig. 12:  Downwelling IR anomalies vs Cloudiness, Alice Springs.

alice ir v cloud

Cloudiness has an even greater influence on IR in desert than maritime locations.

TAKE AWAY FACT:-  For over 20 years, at what are arguably the most suitable sites in Australia, increasing greenhouse gas concentrations have had no detectable effect on downwelling longwave radiation.  Natural factors including cloudiness changes have vastly overwhelmed any such effect and have instead led to a decrease in downwelling longwave radiation.

That is indeed a most inconvenient pause.

*

*

*

*

To replicate these findings:

Go to http://reg.bom.gov.au/climate/reg/oneminsolar/index.shtml

You will need to register with a username and password.  Then click on an irradiance observation station.  Select year and month.  Download the zip file, and open in your preferred application.  (I use Excel).  IR data are in Column W- the values are wattminutes of IR striking a horizontal surface of area one square metre.

My method:  Order the data in ascending order to remove null values.  Count the minutes of valid data and calculate the percentage valid of all possible minutes in that month.  (I discard months with less than 80% valid data.)   Divide the total minutes by 1,440 to convert to days.  Sum the valid data and divide by 60,000 to find kilowatthours; divide by the number of days to find the mean daily value; then multiply by 3.6 to convert to Megajoules.  Plot monthly values against time or carbon dioxide concentration.

The Chicken or the Egg?

May 3, 2018

Climate scientists assert that increasing concentrations of carbon dioxide and other greenhouse gases in the atmosphere have caused and will continue to cause global temperature to increase.  Real world evidence to support this is sadly lacking.

I use CO2 data from NOAA at Mauna Loa and HadSST3  Sea Surface data to compare both over the same period, as oceans cover most of global surface.

There have been 60 years of continued and accelerating CO2 increase.

Figure 1: 60 years of carbon dioxide concentration

CO2 abs trend

Ocean temperatures have also increased:

Figure 2:  HadSST3 Sea Surface Temperature from 1958

Hadsst3

While you may note the distinct lack of warming before the mid 1970s, and that although a quadratic trend line fits the data, the increase is not smooth but a series of steps with some large spikes at about the time of ENSO events, climate scientists insist that it is the overall trend that is important.

The following plot appears to support the greenhouse warming theory.

Figure 3:  Global Sea Surface Temperature anomalies as a function of CO2 concentration

SST vs CO2

It seems that nearly three quarters of the temperature change since 1958 can be explained by the increase in CO2 concentration.  This accords with the theory.

But what if we reverse the axes in Figure 3?

Figure 4:  CO2 concentration as a function of Sea Surface Temperature anomalies

CO2 vs SST

It is equally valid to propose that nearly three quarters of the increase in carbon dioxide concentration can be explained by increasing sea surface temperatures, although that is not the point of this exercise.

To determine if CO2 is the cause of increasing temperature, or vice versa, we need to compare SST anomalies and CO2 concentration as a function of time.  If SST and CO2 both change at the same time, we are no further advanced, but if CO2 changes before SST (due to thermal inertia of the oceans), then that would be evidence for CO2 increase being the driver of temperature increase.

Both CO2 concentration and SST anomalies have pronounced trends, so for comparison both datasets are detrended, and the large seasonal signal is removed from CO2 data to calculate monthly “anomalies”.

Remember, it is increasing CO2 which is supposed to cause increasing temperature, not a static amount, so change in CO2 and SST must be our focus.

My measure of change in SST and CO2 is 12 monthly difference: for example January 2000 minus January 1999.  The next plot shows 12 monthly difference in both SST and CO2 anomalies from 1959 to 2018.  (SST is scaled up for comparison).

Figure 5:  12 monthly change in detrended SST and CO2 anomalies

12m chg Hadsst3 co2

SST appears to spike before CO2.  In the next plot, SST data have been lagged by seven months:

Figure 6:  12 monthly change in detrended SST (lagged 7 months) and CO2 anomalies

lagged 7m 12m chg Hadsst3 co2

There appear to be differences in some decades- the lag time varies from four months to eight or nine months.

Here’s the plot of CO2 vs lagged SST:

Figure 7:  12 month change in CO2 as a function of 12 month change in SST, lagged 7 months

lagged 12m SST vs CO2

Correlation co-efficient of 0.57 is not bad considering we are comparing all ocean basins and the atmosphere.

As SST change generally precedes CO2 change by about seven months (sometimes less, sometimes more), there is NO evidence that CO2 increase causes temperature increase.

But we are still left with the increase in CO2 from 1958 while SST paused or decreased for 19 years.

Figure 8:  Sea Surface Temperature and CO2 concentration, 1958-1976

Hadsst and CO2 58 76

While it is difficult to attribute decadal CO2 increase to non-existent SST rise, there is no evidence for CO2 driving temperature increase in this period.

However, plotting 12 month change of CO2 and SST clearly reveals their relationship.

Figure 9: 12 month change in detrended CO2 and SST anomalies

12m chg Hadsst and CO2 58 76

Figure 10: 12 month change in detrended CO2 and SST anomalies, lagged 7 months

lagged 12m chg Hadsst and CO2 58 76

It is clear that 12 monthly change in temperature drives 12 monthly change in CO2 concentration.

The continual rise in CO2 from 1958 to 1976 while SST declined indicates there must be an underlying increase in CO2 unrelated to immediately preceding temperature, but there is definitely no evidence that it causes sea surface temperature increase at any time.

Summary:

  1. Increase in CO2 concentration is supposed to be the cause of the increase in temperature we see in the SST data (and satellite data).
  2. However, analysis shows that CO2 changes about four to seven months (and longer) after sea surface temperature changes.
  3. Therefore, atmospheric CO2 increase cannot be the cause of surface temperature increase. Real world data disproves the theory.

“Well mixed” Carbon Dioxide Part 2: Sources and Sinks

June 26, 2016

Following from Part 1 (North vs South), this post looks at current sources and sinks for CO2.

Here are some images of surface CO2 concentration for today (June 26 in Australia) from nullschool.

Darker areas show lower CO2, lighter areas are higher.  I recommend the nullschool site!

Europe:

Europe

The industrialised Ruhr valley appears to have the highest CO2 concentration.  Paris Berlin and London are difficult to identify however.

South America (Argentina):

Buenos Aires

The high concentration appears to be from Buenos Aires- perhaps the satellite image of the CO2 is 200 km off target?

China, Korea, and Japan:

China Korea Japan

The highest concentration appears to be close to Japan’s larger cities.  Eastern China, including Shanghai and Beijing, is around 402ppm.

Southern Africa:

S Africa

Kinshasa and Johannesburg are close to the high concentrations, but dry season fires could also be the cause.

Indochina:

Indochina

Oddly, the high concentration is to the south west and west of Hanoi in a rural region.

USA:

USA

A large part of the USA seems to be one vast carbon sink at the moment.  New York and Chicago areas could be associated with some higher CO2, and there are those two areas in California, one of which I identified as Los Angeles in the previous post.  Now I’m not so sure.  More later.

Kamchatka yesterday:

high co2 kamchatchka peninsula

And today:

kamchatchka peninsula 26 june

The Kamchatka Peninsula features many active volcanoes and that’s what I think we are seeing here.  Yesterday afternoon the concentration peaked at 509ppm and today is down a lot but the “hot spots” are still distinct.

Australia:

Australia

Again inland eastern Australia is a carbon sink with large areas under 390ppm.  Melbourne may be the cause of a 408ppm area, but where is Sydney? Brisbane? Perth? Adelaide?

Southern California:

California

Note San Francisco does not appear to have over high CO2.  One of the high areas is indeed over the Los Angeles area, but the other is in the mountains to the north:  Kern County to be precise, where a bushfire has broken out.  The other ‘haze’ appears to be from the Santa Barbara fire.  See this map of fire locations.

firemap usa

It seems to me that it is hard to identify strong sources of CO2 associated with the world’s large cities and industrial areas.  However, it is the weekend, so perhaps this will change during the coming week.  We shall see.

On the other hand, very strong sources of CO2 can be traced to volcanoes and bushfires, and also decaying vegetation in the dry season.  Sinks as we have seen are clearly associated with rapidly growing crops, grasslands, and forests.

And today the Equatorial Pacific sink appears to match the cooler water being pushed westwards by the strengthening trade winds.  See for yourself at nullschool.

I will continue to monitor these sources and sinks as the seasons progress.

“Well Mixed” Carbon Dioxide Part 1: North vs South

June 24, 2016

This post addresses the question: How “well mixed” is carbon dioxide in Earth’s atmosphere?

Here are some images of surface CO2 concentration for yesterday (June 23 in Australia) from nullschool.

Darker areas show lower CO2, lighter areas are higher.  Very nifty.

Fig. 1:  Northern Hemisphere CO2:

co2 image NH

The dark areas with low CO2 are the northern forests and farm land, now growing strongly.  Note the cold, dry North Pole has high CO2.

Fig. 2: Southern Hemisphere:

co2 image SH

Cold, dry Antarctica has high CO2, whereas a broad area of inland Eastern Australia, which recently has had some decent rain, has lower CO2.

Fig. 3:The East:

co2 image EH

Fig. 4: The West:

co2 image WH

The contrast in South America is interesting!

Fig. 5:  The Pacific (a hemisphere on its own):

co2 image Pacific

Note the northern Pacific (north of 5 degrees north) is predominantly above 400ppm, while a broad band from about 5 degrees north to about 20 degrees south is about 395ppm.

Note also a tiny area in southern California pluming into the Pacific with a very high reading of 437ppm.  Los Angeles.

The IPCC and climate scientists generally refer to data from Mauna Loa in Hawaii.  The CSIRO in Australia also measures CO2 concentration at Cape Grim in Tasmania.  The next few charts compare Cape Grim data with that of Mauna Loa.

Fig. 6:  Comparison Mauna Loa and Cape Grim CO2 1976-2016

ML v CG co2

Here is a closer look at the most recent years:

Fig. 7:  Comparison Mauna Loa and Cape Grim CO2 2010-2016

ML v CG co2 2010-16

There are several points to note:

Cape Grim CO2 concentration is increasing at the same rate as Mauna Loa.

There are massive swings in Mauna Loa’s data, while Cape Grim fluctuates gently.  In 2016 there was no “bottom” at all.

Cape Grim is much lower- in fact the annual high points are at about the same level as Mauna Loa’s low points.

The records are out of phase.  Mauna Loa peaks in northern spring and bottoms out in northern autumn, whereas Cape Grim peaks in southern Spring and “bottoms out” in southern Summer.

Now I look at the seasonal change in concentration.

Fig. 8:  Seasonal rises and falls at Cape Grim

Inc decr CG

Fig. 9:  Seasonal rises and falls at Mauna Loa

Inc decr ML

Notice at Mauna Loa the annual rises from bottoms to peaks are getting larger, but so are the falls, while at Cape Grim there are slower rises but falls are lessening.  I compare rises and falls separately in the next two plots:

Fig. 10:  Seasonal increases compared

Incr ML v CG

Fig. 11:  Seasonal decreases compared

Decr ML v CG

I would interpret this as follows:

As emissions increase, carbon dioxide sinks (mainly growing plants) consume more and more.  However this is not enough to remove all of the additional CO2, so each year the growth continues.

In the Northern Hemisphere, sinks completely overwhelm sources in summer.

In the Southern Hemisphere there is a much less pronounced annual peak in spring, perhaps because there is less land, especially from 30 to 70 degrees south, and much of it is dry.  CO2 concentration has increased to the level at which vegetation CO2 sinks are becoming unable to make an impression (at least in El Nino years).

The bulk of CO2 increase originates in the Northern Hemisphere.  In northern winter as the Inter-Tropical Convergence Zone shifts south of the Equator, the north east trade winds move CO2 to the Southern Hemisphere where it is gradually mixed.  In northern summer (now), the ITCZ is north of the Equator, and the image of the Pacific in Figure 5 above shows trade winds crossing the Equator with less CO2 concentration than just to the north.

We know there are large changes to CO2 concentration following ENSO events.  This may be due to the changing circulation over the tropical Pacific as more or less CO2 is shifted by trade winds north and south. Or perhaps changing ocean currents, upwelling, or downwelling warm or cool large ocean areas.

Drier areas of the globe (deserts, Polar regions) have higher CO2 concentration than wetter areas.  Few growing plants, more CO2.  More and greener plants, less CO2.

And finally: CO2 is not “well mixed” globally, and an average concentration is as elusive as an average temperature.  There is a range of concentrations between areas of sources and sinks approaching 80ppm.

Theory and Reality- Part 1: DTR

February 2, 2016

It was two years ago in 2013 that I last posted on the difference between climate scientists’ expectations and reality, so in this series of posts I bring these points up to date, and add a couple of related points.

What the climate scientists tell us:

Dr Karl Braganza in The Conversation on 14/06/2011 lists the “fingerprints” of climate change (my bold).

These fingerprints show the entire climate system has changed in ways that are consistent with increasing greenhouse gases and an enhanced greenhouse effect. They also show that recent, long term changes are inconsistent with a range of natural causes…..
…Patterns of temperature change that are uniquely associated with the enhanced greenhouse effect, and which have been observed in the real world include:
• greater warming in polar regions than tropical regions
• greater warming over the continents than the oceans
• greater warming of night time temperatures than daytime temperatures
• greater warming in winter compared with summer
• a pattern of cooling in the high atmosphere (stratosphere) with simultaneous warming in the lower atmosphere (tropopause).

and later

Similarly, greater global warming at night and during winter is more typical of increased greenhouse gases, rather than an increase in solar radiation.

This post will examine “greater global warming at night” and whether it can be attributed to increased greenhouse gases.

If night time temperatures (minima) increase faster than day time temperatures (maxima), then the difference between these, the Diurnal Temperature Range (DTR) will decrease.

I use BEST global land temperature data,

http://berkeleyearth.lbl.gov/auto/Global/Complete_TMAX_complete.txt
http://berkeleyearth.lbl.gov/auto/Global/Complete_TMIN_complete.txt

and annual CO2 concentration data from NOAA.

ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_mlo.txt

Fig. 1: Global DTR (derived from BEST Land Tmax and Tmin)

DTR globe

Yes, the long term linear trend shows globally DTR has decreased, at a rate of more than half a degree Celsius per century.

Case closed! That is, if you ignore the sudden turnaround in the early 1980s. Since then DTR has been increasing at +1.1C per 100 years.

The plot showing the relationship with CO2 concentration is even more revealing:

Fig. 2: Global DTR vs CO2 concentration

globe dtr v co2 all

If we break the series in two at the dogleg, we get the following plots:

Fig. 3: Global DTR vs CO2 concentration to 1982

globe dtr v co2 1

Fig. 4: Global DTR vs CO2 concentration 1982 to 2015

globe dtr v co2 2

Calling Global Warming Enthusiasts! I am puzzled:

Is DTR decreasing at 1.14 C/ 100 ppm CO2 or increasing at 0.61 C/ 100 ppm?
Can there be any logical explanation for this distinct turnaround?
Is there a problem with (a) the CO2 concentration data? (b) BEST data? (c) the theory behind decreasing DTR being an indicator of enhanced greenhouse warming? (d) all of these?

I now turn to the Australian context, with Australian surface data.

Fig. 5: Annual DTR Australia (from ACORN)

DTR Aust

While averaged across Australia, DTR has decreased since 1910, there has been a marked increase recently. As well, the pattern is different in different regions.

Fig. 6: DTR North Australia

DTR Aust nth

Fig. 7: DTR Southwest Australia

DTR Aust SW

Fig. 8: DTR South Australia

DTR Aust SA

Fig. 9: DTR Victoria

DTR Aust Vic

Fig. 10: DTR Tasmania

DTR Aust Tas

The effect is strongest in the tropical northwest and northeast, and weakest in the southwest and South Australia, Victoria, and Tasmania.

Moreover, the dominant influence on DTR is rainfall:

Fig. 11: DTR vs Rainfall

DTR Aust vs rain

Definitely not CO2!

Fig. 12: DTR vs CO2 concentration

DTR Aust vs CO2

Assessment of decreased DTR as evidence for the enhanced greenhouse effect: Fail.

Other factors- especially rainfall- overwhelm the enhanced greenhouse effect.

UPDATE:

Perhaps I should be more blunt:  If Global Warming Enthusiasts stick to decreasing DTR as an indicator of greenhouse warming, then this shows BEST and ACORN surface data are completely unreliable.  If they stick to claiming ACORN and BEST are “world’s best practice” then they must accept that DTR as an indicator of greenhouse warming is a dead duck.

Energy, Carbon Dioxide, and The Pause

December 16, 2015

Here’s an alternative way to view The Pause. Rather than analysing temperature trends over time, here I compare temperature with carbon emissions and carbon dioxide concentration, and on the way look at a couple of interesting facts that need highlighting.

I use energy data from the BP Statistical Review of World Energy 2015, CO2 data from NOAA, and Temperature data from UAH.

I need to get two important issues out of the way.

Firstly, total energy consumption. Figure 1 shows global energy consumption from all sources for 2014.

Fig. 1: Global Energy Consumption in Million Tonnes of Oil Equivalent
energy 1965 2014

I aggregated coal, oil, and gas into one fossil fuel category. It is plainly obvious that fossil fuels are going to be around for a long time, unless there is a massive multiplication of (a) nuclear energy production, which may not appeal to some environmentalists, or (b) hydro-electricity dams, but that may not appeal either, and are there enough rivers?, or (c) windfarms and large scale solar, with storage, to produce 30 times what they produce now just to meet current demand. Cheap, reliable energy supply is going to depend on technological breakthroughs in the next 100 years and fossil fuels in the meantime.

Secondly, the recent increase in carbon dioxide concentrations is almost entirely anthropogenic.

Figure 2: CO2 concentration as a function of global energy consumption from 1965 to 2014:
Energy vs co2

99% of CO2 increase can be explained by energy use in all forms.

Now, before Global Warming Enthusiasts drool all over their keyboards, let’s look at how this relates to temperature.
I have calculated 12 month running means of CO2 concentration and TLT anomalies. From November 1979 to November 2015- CO2 concentration increased from 336.6 ppm to 400.57 ppm. What happened in this period to global lower troposphere temperatures- arguably a better indicator of global warming than surface temperatures because they show what the bulk of the atmosphere is doing?

Fig. 3: Tropospheric temperature anomalies vs CO2 concentration:
TLT vs CO2 78-15

43.5% of the temperature increase over the satellite era can be explained by/ is associated with the increase of about 64 ppm of CO2. The relationship is anything but linear, however the linear trend indicates, if warming continues at the same rate while CO2 increases by 100 ppm, that temperature anomalies will increase by about 0.63C. By this estimate, doubling CO2 concentration from 280 ppm (what many believe to be pre-industrial concentration) will result in a temperature increase from whatever the global temperature was 250 years ago, of 1.76C. According to HadCruT4, we’ve already seen about 0.8C increase since 1850, so we’re nearly halfway there! Not only that, but we’ll stay below 2 degrees of warming without the need for any emissions reductions!

But the temperature increase is not linear. The next plot shows the tropospheric temperature/ CO2 relationship while temperatures have paused.

Fig. 4: TLT vs CO2, from 363 ppm to 400 ppm:
TLT vs CO2 Pause

That, my friends is the true indicator of The Pause: while CO2 has increased by almost 37 ppm (out of 64 ppm), temperature has remained flat. The trend is +0.01C per 100 ppm CO2.

Finally, I’ve separated the record into three phases: before, during, and after the large step change in the 1990s culminating in the 1997-98 El Nino and the following La Nina.

Fig. 5: Temperature vs CO2 during the first phase, when CO2 increased by 20 ppm:
Phase 1

Fig. 6: Temperature vs CO2 during the second phase, when CO2 increased by about 14 ppm:
Phase 2
Fig. 7: Temperature vs CO2 during the last phase, when CO2 increased by about 29.3 ppm:
Phase 3

Therefore I conclude:

Barring a miraculous breakthrough, renewable energy has no hope of replacing cheap, reliable fossil fuels in the foreseeable future- thankfully!
Greenhouse gas increase is anthropogenic;

CO2 increase has probably caused some small temperature increase;

The relationship between CO2 and temperature in the satellite era is weak, with 58% of the CO2 increase occurring while temperatures have paused;

Therefore temperature change is probably caused mainly by natural factors;

Even if the long term “linear” trend continues, this rate is not alarming, and would lead to a temperature increase during a doubling of CO2 of less than 1.8C.

I find it amusing that Global Warming Enthusiasts pin their hopes for an end to The Pause on a strong El Nino- in other words, on natural variability, the very thing that is supposed to have been overwhelmed by greenhouse warming.

The end of the scam is nigh!

Adjustments vs CO2

August 3, 2014

Steven Goddard has posted about the remarkable correlation between USHCN adjustments and atmospheric carbon dioxide concentrations:

goddard co2

Here’s my plot of Australian adjustments to minima, Acorn minus raw vs CO2 data (downloaded from NASA GISS at

http://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt ):

acorn vs co2

R2= 0.777 not as impressive as 0.988, so not proof of anything except past cooling adjustments which we already knew.  Interesting all the same.

No Evidence of Greenhouse Warming for 67 Years!

January 8, 2014

The release of 2013 data by the BOM has provided me with plenty to work on.  Various commentators are busily alarming people by claiming that the hottest year on record is an indication that global warming due to the enhanced greenhouse effect is already impacting Australia.  What is most disappointing is that the BOM has done nothing to report the truth: that while Australia has definitely been warming, and breaking records, the data show no evidence of greenhouse warming.

One of the key indicators of warming uniquely associated with the enhanced greenhouse effect is night time temperatures (minima) increasing faster than daytime temperatures (maxima).  The difference between the two is called the Diurnal Temperature Range, or DTR.  So, decreasing DTR would be evidence of greenhouse warming.

Here is Australian DTR since 1947:dtr1947-2013

That’s dead flat or slightly rising for 67 years!

I couldn’t believe it either, and double checked.  There’s no mistake- DTR shows no evidence of greenhouse warming in Australia, with a flat trend for 67 years.