Posts Tagged ‘sea level’

The World’s Biggest Thermometer

August 23, 2021

Are temperatures today unprecedented and dangerously high?  Apparently- the IPCC’s 6th Assessment Report says that current temperatures are higher than at any time in the last 125,000 years

But that is wrong.  Temperatures today are cooler than they were in the past.

In making that statement I am not referring to data from ice cores (as in my previous posts here and here), but a simple and accessible temperature measurement device: the biggest thermometer in the world.

The following statements are uncontroversial:

1 Sea level rise is largely due to melting of glaciers and thermal expansion of the oceans.

2 Thermal expansion and glacial melting are symptoms of temperature increase.

3 Higher sea level indicates warmer conditions, lower sea level indicates colder conditions.

4 Sea levels are currently rising (by a small amount- NOAA says Fort Denison, Sydney, has a rise of 0.65mm per year).

5 This indicates temperatures have been rising.

6 But sea levels and therefore temperatures were higher than now about 4,000 to 7,000 years ago.

If you doubt point 6, you can easily tell whether it was warmer or cooler in the past relative to today.

How?  By looking for evidence of sea level change in areas that are not affected by tectonic rising or falling coastal land, or by large scale water run off or glacial melting, or by very large underground water extraction.

Areas such as the eastern coastline of Australia- the world’s biggest thermometer.

The continent of Australia is very old and flat.  It is in the middle of its continental plate with very little tectonic activity.  Australia’s coastlines are therefore largely stable with little vertical movement, apart from a small tilt down at the northern edge and a small uplift along the southern coast.  Australia is also a very long way from ancient ice sheets.

Evidence of higher sea level is plain to see in many places around Australia.  For example, at Phillip Island in Victoria, Victorian Resources Online describes raised Holocene beaches at Chambers Point, 0.5m and 3 to 5m above high water mark.  Arrows on this Google Maps image show where to find them.

More evidence at Wooloweyah Lagoon, near Maclean in NSW:

And Bulli, NSW:

There are many, many other locations where you can find Holocene beaches well above current sea level. 

Some of the height of these stranded beaches is probably due to the weight of deeper seawater from the melting ice sheets gradually tilting up continental coastlines as the sea floor deepened leading to an apparent drop in sea level at the coast.  However, as Lewis et al (2013) and Sloss et al (2018) (see Appendix below) show, this was of lesser importance especially in northern Australia.  Sea level fall was largely due to climatic influences- in particular, cooling and drying since the Holocene Optimum.

To conclude:  Sea levels were higher in the past, so temperatures must have been higher. 

Therefore there is no evidence that current temperature rise is anything unusual.  Just check the world’s biggest thermometer.

Appendix:  Here are a few of many references to higher Australian sea levels in the Holocene, and reasons for variation.

Sloss et al (2007)  Holocene sea-level change on the southeast coast of Australia: a review

“Present sea level was attained between 7900 and 7700 cal. yr BP, approximately 700—900 years earlier than previously proposed. Sea level continued to rise to between +1 and +1.5 m between 7700 and 7400 cal. yr BP, followed by a sea-level highstand that lasted until about 2000 cal. yr BP followed by a gradual fall to present. A series of minor negative and positive oscillations in relative sea level during the late-Holocene sea-level highstand appear to be superimposed over the general sea-level trend.”

ABC TV catalyst 19/6/2008

Even the ABC says sea levels were higher in the Holocene!

Lewis et al (2008) Mid‐late Holocene sea‐level variability in eastern Australia

“We demonstrate that the Holocene sea-level highstand of +1.0–1.5 m was reached ∼7000 cal yr bp and fell to its present position after 2000 yr bp.”

Moreton Bay Regional Council, Shoreline Erosion Management Plan for Bongaree, Bellara, Banksia Beach and Sandstone Point (2010)

“Sea levels ceased rising about 6,500 years ago (the Holocene Stillstand) when they reached approximately 0.4 to 1m above current levels. By 3,000 years before present they had stabilised at current levels”

Switzer et al (2010) Geomorphic evidence for mid–late Holocene higher sea level from southeastern Australia

“This beach sequence provides new evidence for a period of higher sea level 1–1.5 m higher than present that lasted until at least c. 2000–2500 cal BP and adds complementary geomorphic evidence for the mid to late Holocene sea-level highstand previously identified along other parts of the southeast Australian coast using other methods.”

Lewis et al (2013) Post-glacial sea-level changes around the Australian margin: a review

“The Australian region is relatively stable tectonically and is situated in the ‘far-field’ of former ice sheets. It therefore preserves important records of post-glacial sea levels that are less complicated by neotectonics or glacio-isostatic adjustments. Accordingly, the relative sea-level record of this region is dominantly one of glacio-eustatic (ice equivalent) sea-level changes. ….Divergent opinions remain about: (1) exactly when sea level attained present levels following the most recent post-glacial marine transgression (PMT); (2) the elevation that sea-level reached during the Holocene sea-level highstand; (3) whether sea-level fell smoothly from a metre or more above its present level following the PMT; (4) whether sea level remained at these highstand levels for a considerable period before falling to its present position; or (5) whether it underwent a series of moderate oscillations during the Holocene highstand.”

Leonard et al (2015) Holocene sea level instability in the southern Great Barrier Reef, Australia: high-precision U–Th dating of fossil microatolls

“RSL (relative sea level) was as least 0.75 m above present from ~6500 to 5500 yr before present (yr BP; where “present” is 1950). Following this highstand, two sites indicated a coeval lowering of RSL of at least 0.4 m from 5500 to 5300 yr BP which was maintained for ~200 yr. After the lowstand, RSL returned to higher levels before a 2000-yr hiatus in reef flat corals after 4600 yr BP at all three sites. A second possible RSL lowering event of ~0.3 m from ~2800 to 1600 yr BP was detected before RSL stabilised ~0.2 m above present levels by 900 yr BP. While the mechanism of the RSL instability is still uncertain, the alignment with previously reported RSL oscillations, rapid global climate changes and mid-Holocene reef “turn-off” on the GBR are discussed.”

Sloss et al (2018) Holocene sea-level change and coastal landscape evolution in the southern Gulf of Carpentaria, Australia

“ By 7700 cal. yr BP, sea-level reached present mean sea-level (PMSL) and continued to rise to an elevation of between 1.5 m and 2 m above PMSL. Sea level remained ca. + 1.5 between 7000 and 4000 cal. yr BP, followed by rapid regression to within ± 0.5 m of PMSL by ca. 3500 cal. yr BP. When placed into a wider regional context results from this study show that coastal landscape evolution in the tropical north of Australia was not only dependent on sea-level change but also show a direct correlation with Holocene climate variability….  Results indicate that Holocene sea-level histories are driven by regional eustatic driving forces, and not by localized hydro-isostatic influences. “

Dougherty et al (2019)  Redating the earliest evidence of the mid-Holocene relative sea-level highstand in Australia and implications for global sea-level rise

“The east coast of Australia provides an excellent arena in which to investigate changes in relative sea level during the Holocene…. improved dating of the earliest evidence for a highstand at 6,880±50 cal BP, approximately a millennium later than previously reported. Our results from Bulli now closely align with other sea-level reconstructions along the east coast of Australia, and provide evidence for a synchronous relative sea-level highstand that extends from the Gulf of Carpentaria to Tasmania. Our refined age appears to be coincident with major ice mass loss from Northern Hemisphere and Antarctic ice sheets, supporting previous studies that suggest these may have played a role in the relative sea-level highstand. Further work is now needed to investigate the environmental impacts of regional sea levels, and refine the timing of the subsequent sea-level fall in the Holocene and its influence on coastal evolution.”

Helfensdorfer et al (2020) Atypical responses of a large catchment river to the Holocene sea-level highstand: The Murray River, Australia

“Three-dimensional numerical modelling of the marine and fluvial dynamics of the lower Murray River demonstrate that the mid-Holocene sea-level highstand generated an extensive central basin environment extending at least 140 kilometres upstream from the river mouth and occupying the entire one to three kilometre width of the Murray Gorge. This unusually extensive, extremely low-gradient backwater environment generated by the two metre sea-level highstand….”

Pacific Sea Levels- Warming, ENSO, or Wind?

November 1, 2015

Apparently our Opposition Leader Bill Shorten, his deputy Tanya Plibersek, and immigration spokesman Richard Marles are heading off to the Pacific to discuss “the dangerous consequences of climate change”, all paid for by media baron Harold Mitchell, according to yesterday’s Weekend Australian.
They will visit Papua New Guinea, the Marshall Islands, and Kiribati (pronounced “Kiri-bahss”).
The President of Kiribati leads the complaints about the threat of global warming to his island nation. Kiribati has indeed seen foreshore erosion and salt water intrusion in recent years- just don’t mention causeway construction and underground water extraction.
Time for a reality check.
Sea level rise in Kiribati and the Marshalls has nothing to do with climate change and everything to do with the ENSO cycle, and winds in particular.
In this post I use data from the Australian Bureau of Meteorology’s Pacific Sea Level Monitoring Project at http://www.bom.gov.au/pacific/projects/pslm/. I also use NINO 4 data from http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices and Trade Wind Index data from http://www.cpc.ncep.noaa.gov/data/indices/wpac850.
Fig. 1: Island nations in the Pacific Sea Level Monitoring Project, also showing the area of the NINO 4 index. (Click graphics to enlarge).

Pacific MSL map
I have converted raw mean sea level data to monthly anomalies from 1995-2014 means, and scaled down NINO 4 and Trade Wind data, in order to make comparison easier.
This figure shows sea level data at all of the islands in the BOM’s Pacific Sea Level Monitoring Project.
Fig. 2: 12 month smoothed sea level anomalies, 1992-2015, for all islands in the Sea Level Monitoring Project. The vertical axis is in metres.

MSL graph all
Point 1: While there is broad agreement on rises and falls, the timing of the rises and falls is very mixed- some rise at the same time as others fall.

This is clearly shown by Kiribati and the Marshalls- when one is rising the other is falling.
Fig. 3: 12 month sea level anomalies at Kiribati and Marshalls, 1992 to 2015.

MSL M & K
Perhaps Mr Shorten can discuss why sea level changes at the Marshalls precede those at Kiribati by many months, such that they are presently moving in opposite directions.
Point 2: There is no doubt that from 1992 to 2015, throughout this region sea levels have been rising: both the Marshalls and Kiribati by 4.8 mm per year. However, since sea level rise occurs at different times, it cannot be due to temperature change. This is further reinforced by the next graphic.
Fig. 4: NINO sea surface temperature anomalies, January 1982- September 2015, 12 month means.

NINO indices
NINO 4 sea surface temperature anomalies since 1982 have almost zero (+0.01C per decade) trend (and the other indices show negative trend in sea surface temperatures). The tropical Pacific has not warmed.
At first glance, sea level change at these islands appears to correlate well with El Ninos and La Ninas, however close analysis shows a much more complex picture.
Fig. 5: 12 month running means of Kiribati sea level anomalies compared to NINO 4

K MSL v NINO4
Note that sea level changes several months before the NINO 4 index.
Fig. 6: 12 month running means of Marshall Islands sea level anomalies compared to the Trade Winds Index.

Tr Winds v MSL Marshalls
Note that the Trade Winds mostly change simultaneously with or some months before sea levels change.
Point 3: Sea level changes at Kiribati precede ENSO events, as measured by the NINO 4 index, but follow or match the Trades at the Marshalls (just to the north of the NINO 4 region).
However, in Figure 3 above, note that sea level anomalies at the Marshalls PRECEDE Kiribati.
So what is the cause of sea level rise in the western Pacific, which is an alarming 4.8mm per year at Kiribati and the Marshall islands?
Fig. 7: Trade Wind Index, December 1992 to September 2015

Trades trend
The Trade Winds have been increasing throughout the period of the Sea Level Monitoring Project, pushing surface water from east to west across the Pacific.
Fig. 8: Western Pacific winds at 1 November 2015

Pacific winds 1Nov 15(From http://earth.nullschool.net/#current/wind/surface/level/orthographic=163.83,1.50,277 )
At Kiribati westerly wind pulses, which help to initiate and strengthen El Ninos, push water against the low coral cay and raise the sea level at the tide gauge, (located on the western side of Tarawa, which is in normal and La Nina years the leeward side).

 

Fig. 9:  Tarawa Atoll

Tarawa atoll
When these winds slacken and trade winds strengthen, the sea level drops. In the rising sea level phase, the westerly winds push warmer water eastwards, and the weaker trades do not bring in as much cooler water from higher latitudes. Thus the rise in sea level at Kiribati precedes a rise in sea surface temperature, and the peak in sea level occurs about 5 months before the peak in NINO 4, one of the El Nino indicators.
Conversely, weaker trade winds bottom out some months before the bottom of sea levels at the Marshalls, which are to the north of the area affected by westerly wind pulses.
Therefore we can reassure Mr Shorten and his pals that sea level rise has little to do with climate change (unless alarmists claim that global warming will lead to stronger La Ninas, which lead to cooler temperatures- but I thought the plan was for more El Ninos).
Sea level rise is largely due to wind. And no doubt Mr Shorten will contribute to that.