“Well Mixed” Carbon Dioxide Part 1: North vs South

This post addresses the question: How “well mixed” is carbon dioxide in Earth’s atmosphere?

Here are some images of surface CO2 concentration for yesterday (June 23 in Australia) from nullschool.

Darker areas show lower CO2, lighter areas are higher.  Very nifty.

Fig. 1:  Northern Hemisphere CO2:

co2 image NH

The dark areas with low CO2 are the northern forests and farm land, now growing strongly.  Note the cold, dry North Pole has high CO2.

Fig. 2: Southern Hemisphere:

co2 image SH

Cold, dry Antarctica has high CO2, whereas a broad area of inland Eastern Australia, which recently has had some decent rain, has lower CO2.

Fig. 3:The East:

co2 image EH

Fig. 4: The West:

co2 image WH

The contrast in South America is interesting!

Fig. 5:  The Pacific (a hemisphere on its own):

co2 image Pacific

Note the northern Pacific (north of 5 degrees north) is predominantly above 400ppm, while a broad band from about 5 degrees north to about 20 degrees south is about 395ppm.

Note also a tiny area in southern California pluming into the Pacific with a very high reading of 437ppm.  Los Angeles.

The IPCC and climate scientists generally refer to data from Mauna Loa in Hawaii.  The CSIRO in Australia also measures CO2 concentration at Cape Grim in Tasmania.  The next few charts compare Cape Grim data with that of Mauna Loa.

Fig. 6:  Comparison Mauna Loa and Cape Grim CO2 1976-2016

ML v CG co2

Here is a closer look at the most recent years:

Fig. 7:  Comparison Mauna Loa and Cape Grim CO2 2010-2016

ML v CG co2 2010-16

There are several points to note:

Cape Grim CO2 concentration is increasing at the same rate as Mauna Loa.

There are massive swings in Mauna Loa’s data, while Cape Grim fluctuates gently.  In 2016 there was no “bottom” at all.

Cape Grim is much lower- in fact the annual high points are at about the same level as Mauna Loa’s low points.

The records are out of phase.  Mauna Loa peaks in northern spring and bottoms out in northern autumn, whereas Cape Grim peaks in southern Spring and “bottoms out” in southern Summer.

Now I look at the seasonal change in concentration.

Fig. 8:  Seasonal rises and falls at Cape Grim

Inc decr CG

Fig. 9:  Seasonal rises and falls at Mauna Loa

Inc decr ML

Notice at Mauna Loa the annual rises from bottoms to peaks are getting larger, but so are the falls, while at Cape Grim there are slower rises but falls are lessening.  I compare rises and falls separately in the next two plots:

Fig. 10:  Seasonal increases compared

Incr ML v CG

Fig. 11:  Seasonal decreases compared

Decr ML v CG

I would interpret this as follows:

As emissions increase, carbon dioxide sinks (mainly growing plants) consume more and more.  However this is not enough to remove all of the additional CO2, so each year the growth continues.

In the Northern Hemisphere, sinks completely overwhelm sources in summer.

In the Southern Hemisphere there is a much less pronounced annual peak in spring, perhaps because there is less land, especially from 30 to 70 degrees south, and much of it is dry.  CO2 concentration has increased to the level at which vegetation CO2 sinks are becoming unable to make an impression (at least in El Nino years).

The bulk of CO2 increase originates in the Northern Hemisphere.  In northern winter as the Inter-Tropical Convergence Zone shifts south of the Equator, the north east trade winds move CO2 to the Southern Hemisphere where it is gradually mixed.  In northern summer (now), the ITCZ is north of the Equator, and the image of the Pacific in Figure 5 above shows trade winds crossing the Equator with less CO2 concentration than just to the north.

We know there are large changes to CO2 concentration following ENSO events.  This may be due to the changing circulation over the tropical Pacific as more or less CO2 is shifted by trade winds north and south. Or perhaps changing ocean currents, upwelling, or downwelling warm or cool large ocean areas.

Drier areas of the globe (deserts, Polar regions) have higher CO2 concentration than wetter areas.  Few growing plants, more CO2.  More and greener plants, less CO2.

And finally: CO2 is not “well mixed” globally, and an average concentration is as elusive as an average temperature.  There is a range of concentrations between areas of sources and sinks approaching 80ppm.

Tags: ,

3 Responses to ““Well Mixed” Carbon Dioxide Part 1: North vs South”

  1. ngard2016 Says:

    Ken, perhaps you could forward this to WUWT to see if Anthony might show this to a wider audience.

  2. michaelspencer Says:

    Fascinatingly obvious ….. Just look at the Amazon, by way of example.

  3. siliggy Says:

    Thanks Ken. Both this and your pause update post are great to stare at and listen to the cogs clunking.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: