Temperature Variation Due to ENSO

July 25, 2016

In this post I use the Multivariate ENSO Index (MEI) supplied by NOAA at http://www.esrl.noaa.gov/psd/enso/mei/index.html and lower tropospheric temperature data supplied by UAH to show how much of temperature variation over the past 20 years is due to ENSO and how little is due to CO2.  I will keep words brief and let graphics do the talking.

Firstly, here is the MEI data from 1950:

Fig. 1:  Monthly MEI from 1950

mei monthly

As an aside, this is how it compares with SOI data.  The SOI is inverted and both are scaled for comparison.

Fig. 2:  MEI compared with SOI inverted

mei vs soi

Now compare scaled MEI with Global UAH:

Fig. 3: MEI (scaled) and UAH

mei monthly w uah

Notice tropospheric temperatures appear to lag the MEI by some 5 months:

Fig. 4: MEI advanced 5 months and UAH

mei monthly advd 5m w uah graph

Notice both datasets are noisy, and there is a clear discrepancy in the early 1990s.  12 month running means show this more clearly:

Fig. 5:  12 month means of UAH and MEI advanced 5 months:

mei advd w uah 12m

The slump in UAH data is shown by the arrow.  Mt Pinatubo’s main eruption was in June 1991. (Without El Chichon in 1982, there may well have been a much higher spike in the mid-1980s).

Now let’s look at the correlation between monthly MEI and UAH.  Firstly, the whole period from December 1978:

Fig. 6:  UAH vs MEI advanced 5 months 1978 – 2016

mei monthly advd 5m w uah

About 13% of temperature variation is associated with MEI variation.  Doesn’t tell us much does it.  What if we exclude the UAH data for two years from April 1982, and from July 1991 to December 1995?

Fig. 7:  UAH vs MEI advanced 5 months 1978 – 2016 with periods after volcanic eruptions excluded

mei monthly advd 5m v uah excl volcanoes

Considering the fluctuations in both datasets, that shows a fairly strong correlation.

Next, we examine the periods, before, during, and after the Pinatubo influence.

Fig. 8:  :  UAH vs MEI advanced 5 months December 1978 – June 1991, excluding April 1982 to March 1984

mei monthly advd 5m w uah 78-91

Again we see a similar correlation.

Fig. 9:  UAH vs MEI advanced 5 months July 1991 – December 1995

mei monthly advd 5m w uah 91-95.jpg

The strong positive correlation of the previous plots has broken down.

Fig. 10:  UAH vs MEI advanced 5 months January 1996 – June 2016

mei monthly advd 5m w uah 96-16

The correlation is even higher.  Over half of temperature variation is associated with ENSO variation five months previously.  Here is the same 1996-2016 plot but with 12 month running means:

Fig. 11  UAH vs MEI advanced 5 months January 1996 – June 2016, with 12 month running means

mei  advd 5m w uah 96-16 12m

74% of temperature variation for the past 20 years and 6 months can be explained by previous ENSO variation alone.  In the same period, carbon dioxide concentration at Mauna Loa has increased by 44.77 ppm, which is more than 49% of the entire increase from 1958, and Global temperature as measured by UAH has increased by a little over 0.1 degree C.

No wonder Global Warming Enthusiasts were pinning their hopes on the 2015-16 El Nino to put an end to the Pause, but they must also hope for the ENSO- temperature correlation to break down shortly, as a deep La Nina will mean cooler temperatures and further embarrassment for them.  However, the correlation breaks down when volcanoes cause lower temperatures in El Nino conditions as we have seen, but what mechanism could there be for higher temperatures in La Nina conditions?  Perhaps that magical greenhouse gas CO2?  That would indeed be spectacular- there are no outliers at the low end of any of the above plots.  The most UAH has been higher than expected with low MEI is about +0.2C to +0.3C, and those values cannot be described as outliers.  Besides, UAH for June is already down to +0.34C, and we are only four months past the peak- the cooling has barely begun.

Finally, this is a plot of the centred 37 month mean MEI (because La Ninas can last for three years).

Fig. 12: 37 month centred mean MEI

mei 37m avg

Notice that before 1975 the 37 month average never exceeded +0.5, the majority of the time was in negative territory, and in the 1950s and 1970s reached below -1.0.  Since 1975 the MEI has dropped below -0.5 only once in 2000 and approached -0.5 in 2012, but has been in positive territory for the vast majority of the time, exceeded +0.5 in six events, and was above +1.0 in the early 1990s.  It would be surprising if global temperatures had not seen a large increase.

How low will the monthly MEI go with the coming La Nina, and how low will the following global temperatures go?  All depends on La Nina’s length and strength, but the monthly MEI data are falling fast.  Stand by.

The Pause Update: June 2016

July 8, 2016

The complete UAH v6.0 data for June were released yesterday.  I present all the graphs for various regions, and as well summaries for easier comparison.  The Pause still refuses to go away, despite all expectations.

These graphs show the furthest back one can go to show a zero or negative trend (less than 0.1 +/-0.1C per 100 years) in lower tropospheric temperatures. I calculate 12 month running means to remove the small possibility of seasonal autocorrelation in the monthly anomalies. Note: The satellite record commences in December 1978- now 37 years and 7 months long- 451 months. 12 month running means commence in November 1979. The y-axes in the graphs below are at December 1978, so the vertical gridlines denote Decembers. The final plotted points are June 2016.

 [CLICK ON IMAGES TO ENLARGE]

Globe:

pause jun16 globe

The 12 month mean to June 2016 remains at +0.46C and should stay at about this value for the next two months.  If so, The Pause, (now 1 month shorter), will continue to be an embarrassing reality! However, it may end soon after with a small positive trend.

And, for the special benefit of those who think that I am deliberately fudging data by using 12 month running means, here is the plot of monthly anomalies, which shows that The Pause is over by my rather strict criterion:

pause jun16 globe mthly

+0.3C/100 years since December 1997- not exactly alarming.  The Pause will return sooner with monthly anomalies than 12 month means of course.

Northern Hemisphere:

pause jun16 NH

The Northern Hemisphere Pause has ended as expected.  Note the not very alarming warming of 0.21 +/- 0.1C per 100 years for half the record compared with 1.37C for the whole period.

Southern Hemisphere:

pause jun16 SH

The Pause has shortened by 2 months.  For well over half the record the Southern Hemisphere has zero trend.

Tropics:

pause jun16 tropics

The Pause has shortened by another 3 months with the El Nino influence, but is still over half the record.

Tropical Oceans:

pause jun16 tropic oceans

The Pause has shortened by another 2 years- the El Nino now having a strong effect on the 12 month means.

Northern Extra Tropics:

pause jun16 NH ExtT

The Pause by this criterion has ended in this region, however note that the slope since 1998 is +0.29 +/- 0.1C per 100 years compared with +1.59C for the whole period.  That’s still embarassingly slow warming.

Southern Extra Tropics:

pause jun16 SH ExtT

The Pause has lengthened by another month.

Northern Polar:

pause jun16 NP

The Pause has decreased by 1 month.

Southern Polar:

pause jun16 SP

The South Polar region has been cooling for the entire record.

USA 49 States:

pause jun16 USA49

No change.

Australia:

pause jun16 Oz

The Australian Pause has not changed.

The next graphs summarise the above plots. First, a graph of the relative length of The Pause in the various regions:

Pause length jun 16

Note that the Pause has ended by my criteria in the Northern Extra Tropics and the Northern Hemisphere, but apart from the North Polar region, all other regions have a Pause of 18 years 8 months or longer- well over half the record, including the South Polar region which has been cooling for the whole record.

The variation in the linear trend for the whole record, 1978 to the present:

Trends 1978 jun 16

Note the decrease in trends from North Polar to South Polar.

And the variation in the linear trend since June 1998, which is about halfway between the global low point of December 1997 and the peak in December 1998:

Trends 1998 jun 16

The only region to show strong warming for this period (18 years 1 month) is the North Polar region: the Northern Extra Tropics, Tropics, and the Northern Hemisphere have very mild warming but all other regions (including the Globe as a whole and all of the Southern Hemisphere) are Paused or cooling. The imbalance between the two hemispheres is obvious. The lower troposphere over Australia has been strongly cooling for more than 18 years.

12 month means will continue to grow in some regions for the next few months, so the Pause as here defined may end in some regions shortly (probably North Polar, Tropics, and Tropical Oceans), and may not reappear until early 2018.  The impact of the coming La Nina will be worth watching.  Unless temperatures reset at a new, higher level and continue rising, very low trends will remain.

“Well mixed” Carbon Dioxide Part 2: Sources and Sinks

June 26, 2016

Following from Part 1 (North vs South), this post looks at current sources and sinks for CO2.

Here are some images of surface CO2 concentration for today (June 26 in Australia) from nullschool.

Darker areas show lower CO2, lighter areas are higher.  I recommend the nullschool site!

Europe:

Europe

The industrialised Ruhr valley appears to have the highest CO2 concentration.  Paris Berlin and London are difficult to identify however.

South America (Argentina):

Buenos Aires

The high concentration appears to be from Buenos Aires- perhaps the satellite image of the CO2 is 200 km off target?

China, Korea, and Japan:

China Korea Japan

The highest concentration appears to be close to Japan’s larger cities.  Eastern China, including Shanghai and Beijing, is around 402ppm.

Southern Africa:

S Africa

Kinshasa and Johannesburg are close to the high concentrations, but dry season fires could also be the cause.

Indochina:

Indochina

Oddly, the high concentration is to the south west and west of Hanoi in a rural region.

USA:

USA

A large part of the USA seems to be one vast carbon sink at the moment.  New York and Chicago areas could be associated with some higher CO2, and there are those two areas in California, one of which I identified as Los Angeles in the previous post.  Now I’m not so sure.  More later.

Kamchatka yesterday:

high co2 kamchatchka peninsula

And today:

kamchatchka peninsula 26 june

The Kamchatka Peninsula features many active volcanoes and that’s what I think we are seeing here.  Yesterday afternoon the concentration peaked at 509ppm and today is down a lot but the “hot spots” are still distinct.

Australia:

Australia

Again inland eastern Australia is a carbon sink with large areas under 390ppm.  Melbourne may be the cause of a 408ppm area, but where is Sydney? Brisbane? Perth? Adelaide?

Southern California:

California

Note San Francisco does not appear to have over high CO2.  One of the high areas is indeed over the Los Angeles area, but the other is in the mountains to the north:  Kern County to be precise, where a bushfire has broken out.  The other ‘haze’ appears to be from the Santa Barbara fire.  See this map of fire locations.

firemap usa

It seems to me that it is hard to identify strong sources of CO2 associated with the world’s large cities and industrial areas.  However, it is the weekend, so perhaps this will change during the coming week.  We shall see.

On the other hand, very strong sources of CO2 can be traced to volcanoes and bushfires, and also decaying vegetation in the dry season.  Sinks as we have seen are clearly associated with rapidly growing crops, grasslands, and forests.

And today the Equatorial Pacific sink appears to match the cooler water being pushed westwards by the strengthening trade winds.  See for yourself at nullschool.

I will continue to monitor these sources and sinks as the seasons progress.

“Well Mixed” Carbon Dioxide Part 1: North vs South

June 24, 2016

This post addresses the question: How “well mixed” is carbon dioxide in Earth’s atmosphere?

Here are some images of surface CO2 concentration for yesterday (June 23 in Australia) from nullschool.

Darker areas show lower CO2, lighter areas are higher.  Very nifty.

Fig. 1:  Northern Hemisphere CO2:

co2 image NH

The dark areas with low CO2 are the northern forests and farm land, now growing strongly.  Note the cold, dry North Pole has high CO2.

Fig. 2: Southern Hemisphere:

co2 image SH

Cold, dry Antarctica has high CO2, whereas a broad area of inland Eastern Australia, which recently has had some decent rain, has lower CO2.

Fig. 3:The East:

co2 image EH

Fig. 4: The West:

co2 image WH

The contrast in South America is interesting!

Fig. 5:  The Pacific (a hemisphere on its own):

co2 image Pacific

Note the northern Pacific (north of 5 degrees north) is predominantly above 400ppm, while a broad band from about 5 degrees north to about 20 degrees south is about 395ppm.

Note also a tiny area in southern California pluming into the Pacific with a very high reading of 437ppm.  Los Angeles.

The IPCC and climate scientists generally refer to data from Mauna Loa in Hawaii.  The CSIRO in Australia also measures CO2 concentration at Cape Grim in Tasmania.  The next few charts compare Cape Grim data with that of Mauna Loa.

Fig. 6:  Comparison Mauna Loa and Cape Grim CO2 1976-2016

ML v CG co2

Here is a closer look at the most recent years:

Fig. 7:  Comparison Mauna Loa and Cape Grim CO2 2010-2016

ML v CG co2 2010-16

There are several points to note:

Cape Grim CO2 concentration is increasing at the same rate as Mauna Loa.

There are massive swings in Mauna Loa’s data, while Cape Grim fluctuates gently.  In 2016 there was no “bottom” at all.

Cape Grim is much lower- in fact the annual high points are at about the same level as Mauna Loa’s low points.

The records are out of phase.  Mauna Loa peaks in northern spring and bottoms out in northern autumn, whereas Cape Grim peaks in southern Spring and “bottoms out” in southern Summer.

Now I look at the seasonal change in concentration.

Fig. 8:  Seasonal rises and falls at Cape Grim

Inc decr CG

Fig. 9:  Seasonal rises and falls at Mauna Loa

Inc decr ML

Notice at Mauna Loa the annual rises from bottoms to peaks are getting larger, but so are the falls, while at Cape Grim there are slower rises but falls are lessening.  I compare rises and falls separately in the next two plots:

Fig. 10:  Seasonal increases compared

Incr ML v CG

Fig. 11:  Seasonal decreases compared

Decr ML v CG

I would interpret this as follows:

As emissions increase, carbon dioxide sinks (mainly growing plants) consume more and more.  However this is not enough to remove all of the additional CO2, so each year the growth continues.

In the Northern Hemisphere, sinks completely overwhelm sources in summer.

In the Southern Hemisphere there is a much less pronounced annual peak in spring, perhaps because there is less land, especially from 30 to 70 degrees south, and much of it is dry.  CO2 concentration has increased to the level at which vegetation CO2 sinks are becoming unable to make an impression (at least in El Nino years).

The bulk of CO2 increase originates in the Northern Hemisphere.  In northern winter as the Inter-Tropical Convergence Zone shifts south of the Equator, the north east trade winds move CO2 to the Southern Hemisphere where it is gradually mixed.  In northern summer (now), the ITCZ is north of the Equator, and the image of the Pacific in Figure 5 above shows trade winds crossing the Equator with less CO2 concentration than just to the north.

We know there are large changes to CO2 concentration following ENSO events.  This may be due to the changing circulation over the tropical Pacific as more or less CO2 is shifted by trade winds north and south. Or perhaps changing ocean currents, upwelling, or downwelling warm or cool large ocean areas.

Drier areas of the globe (deserts, Polar regions) have higher CO2 concentration than wetter areas.  Few growing plants, more CO2.  More and greener plants, less CO2.

And finally: CO2 is not “well mixed” globally, and an average concentration is as elusive as an average temperature.  There is a range of concentrations between areas of sources and sinks approaching 80ppm.

The Pause Update: May 2016

June 5, 2016

The complete UAH v6.0 data for May were released on today.  I present all the graphs for various regions, and as well summaries for easier comparison.  The Pause still refuses to go away, despite all expectations.

These graphs show the furthest back one can go to show a zero or negative trend (less than 0.1 +/-0.1C per 100 years) in lower tropospheric temperatures. I calculate 12 month running means to remove the small possibility of seasonal autocorrelation in the monthly anomalies. Note: The satellite record commences in December 1978- now 37 years and 6 months long- 450 months. 12 month running means commence in November 1979. The y-axes in the graphs below are at December 1978, so the vertical gridlines denote Decembers. The final plotted points are May 2016.

 [CLICK ON IMAGES TO ENLARGE]

Globe:

May16 globe

The 12 month mean to May 2016 is +0.46C.  The Pause is still an embarrassing reality! However, it may “disappear” soon with a small positive trend.

And, for the special benefit of those who think that I am deliberately fudging data by using 12 month running means, here is the plot of monthly anomalies, which shows that The Pause is over by my rather strict criterion:

May16 globe mthly

+0.27C/100 years since December 1997- not exactly alarming.  The Pause will return sooner with monthly anomalies than 12 month means of course.

Northern Hemisphere:

May16 NH

The Northern Hemisphere Pause has “disappeared” as expected.  Note the not very alarming warming of 0.14+/- 0.1C per 100 years for half the record compared with 1.35C for the whole period.

Southern Hemisphere:

May16 SH

The pause has shortened by one month.  For well over half the record the Southern Hemisphere has zero trend.

Tropics:

May16 Tropics

The Pause has shortened dramatically with the El Nino influence, but is still over half the record.

Tropical Oceans:

May16 Tropic oceans

The Pause has shortened by 19 months.

Northern Extra Tropics:

May16 Nth ExTropics

The Pause by this criterion has ended in this region, however note that the slope since 1998 is +0.23 +/- 0.1C per 100 years compared with +1.58C for the whole period.  That’s still embarassingly slow warming.

Southern Extra Tropics:

May16 Sth ExTropics

The Pause has lengthened by another month.

Northern Polar:

May16 NP

The Pause has decreased by 2 months.

Southern Polar:

May16 SP

The South Polar region has been cooling for the entire record.

USA 49 States:

May16 USA49

No change.

Australia:

May16 Oz

The Australian Pause has lengthened rapidly.

The next graphs summarise the above plots. First, a graph of the relative length of The Pause in the various regions:

Pause length may16

Note that the Pause has ended by my criteria in the Northern Extra Tropics and the Northern Hemisphere, but apart from the North Polar region, all other regions have a Pause of 18 years 9 months or longer- well over half the record, including the South Polar region which has been cooling for the whole record.

The variation in the linear trend for the whole record, 1978 to the present:

Trends 1978 may16

Note the decrease in trends from North Polar to South Polar.

And the variation in the linear trend since June 1998, which is about halfway between the global low point of December 1997 and the peak in December 1998:

Trends Jun98 may16

The only region to show strong warming for this period (18 years) is the North Polar region: the Northern Extra Tropics and the Northern Hemisphere have very mild warming but all other regions are Paused or cooling. In fact “global” warming since June 1998 is limited to that part of the globe north of 20 degrees North.  And the lower troposphere over Australia has had strong cooling for the past 18 years.

12 month means will continue to grow for the next few months, so the Pause as  here defined may disappear shortly, and may not reappear until early 2018.  The impact of the coming La Nina will be worth watching.  Unless temperatures reset at a new, higher level and continue rising, very low trends will remain.

Temperature and Mortality

May 24, 2016

We are all going to die, nothing is surer. “Nobody knows the day or the hour”, but one thing is clear: we are more likely to die in winter than in summer.

Death by unnatural causes (suicide, accident, bushfire, disaster, even acute illness) can come to otherwise healthy people of any age. Death by natural causes is more predictable.

Those vulnerable to death are the elderly, very young babies, those with chronic illness (e.g. asthma, diabetes) and weakened immunity, and those with respiratory and circulatory illness.

Analysing mortality is made difficult because the sample population is always changing. Excess deaths in one month may be followed by further excess deaths in the following month, or because so many vulnerable people have already died, there will be fewer than expected deaths in the next month or months, or even the next couple of winters. Similarly, if fewer than expected deaths occur, there will be a larger cohort of the vulnerable in the following months, getting older and with probably poorer health. Population growth, aging, migration, improved vaccines, and public education programs all play a part as well.

In this analysis, I use mortality and population data from the Australian Bureau of Statistics (ABS), and temperature data from the Bureau of Meteorology (BOM), for Victoria, as it is a small and compact state which is subject to large temperature changes and also severe heat waves. Monthly mortality data are difficult to find, so this study is restricted to the period January 2002 to December 2011. A 10 year period is hardly sufficient for meaningful averages, however some useful insights can be found.

Mortality statistics are available by month, but population figures are by quarter, therefore I interpolated estimated monthly population figures based on three month growth.

Firstly, this plot shows the total deaths for every month from January 2002 to December 2011.

Fig. 1:

act D per mnth
Note the seasonal spikes and dips. The apparent increase in deaths can be compared with Victoria’s population increase:

Fig.2:

Population Vic
By dividing the total deaths by the population in thousands we can calculate the death rate:

Fig. 3:

Death rate per yr

Note the mortality rate has decreased, and that, in spite of heatwaves, bushfires, and flu pandemics, 2009 had a lower death rate than 2008.

Because months have varying numbers of days, a better analysis can be made by calculating the Daily Death Rate for each month (by dividing each monthly rate by 31, 30, 29, or 28 days).

Fig. 4:

mortality per month

For the state of Victoria for the 10 years to 2011, on average more deaths occurred for each day in August than for any other month. The lowest Daily Death Rate was in February.

Now compare with monthly averages (2002 to 2011) for maximum and minimum temperatures:

Fig. 5:

Tmax Tmin avg

The death rate peak lags July temperature by about a month. Cooler months (June to September) are deadlier than warmer (December to April).

The relationship with temperature can be shown with scatter plots:

Fig. 6:

DDR v Tmax

Fig. 7:

DDR v Tmin

Which merely reinforce that deaths are more likely in winter!

Now we look at the question of estimating how many deaths are likely in a given period, by multiplying the average daily death rate for each month by the number of days in each month and by the estimated total population for each month. By subtracting this figure from the actual number of deaths we get a mortality “anomaly”.  The following graph shows this anomaly for each year:

Fig. 8:

Act minus exp deaths per year

And each month:

Fig. 9:

Diff act minus exp Deaths per mnth

Note the peaks in the winters of 2002 and 2003, and also in the summer of 2008-2009. Note also that both graphs show that in spite of a killer heatwave, the Black Saturday bushfire, and the swine flu pandemic, deaths in 2009 were below what could be expected.

To put the anomaly for January 2009 into context, we can compare actual daily deaths per 1,000 population for all months from 2002 to 2011:

Fig. 10:

act daily D per mnth

Note that the extreme figure for January 2009, while extremely high for January, is still below those of the lowest extremes of June, July, and August.

Perhaps higher mortality in the winter months is coincidence and due to some other factor than temperature- seasonal flu incidence for example. I now look at the month of August with the highest average mortality rate:

Fig. 11:

Act minus exp deaths vs Tmin August

There is fairly decent correlation showing that for every degree warmer in minima, the August death toll will be around 150 less than expected.

February, with the lowest rate:

Fig. 12:

Act minus exp deaths vs Tmin Feb

Even in summer, warmer minima mean fewer deaths.

In summer, do higher maxima cause more deaths?

Fig. 13:

Act minus exp deaths vs Tmax Feb

Even including the 173 deaths in the Black Saturday bushfires in the 200 extra deaths for February 2009, there is no trend.

January, whose data include the 2009 heatwave:

Fig. 14:

Act minus exp deaths vs Tmax Jan

A very small trend, but the 2009 heatwave outlier is obvious and skews the data. (Victorian health authorities say there were 374 excess deaths in the week to 1 February 2009).

Extreme heatwaves are indeed killers. Normal hot summers up to two degrees above average are not.

Conclusion:

Improved public health measures, influenza vaccines, and improved public awareness – plus warmer winters- have led to a decrease in the Victorian mortality rate in the period 2002-2011.

Extreme heatwaves are dangerous in Victoria and cause hundreds of extra deaths especially amongst the elderly (>75 years old). However, these are rare events. Severe and Extreme Heatwaves are newsworthy precisely because they are unusual.

Normal Victorian winters are even more dangerous with on average 17.5% more deaths in winter than summer every year, but because this is normal and expected, this regular annual spike in deaths is unremarkable and not newsworthy- much less regarded as a natural disaster. While 374 excess deaths in a week in a heatwave is shocking, even with these included, the highest January’s Daily Death Rate (in 2009) is below that of the lowest of any winter month.

Warmer minimum temperatures are associated with lower death rates at all times of the year, but especially in August in Victoria, where for every degree of extra warmth, about 150 fewer deaths can be expected. I hope, for the sake of those who are sick or elderly, that we have a warm winter this year.

The Pause Update: April 2016

May 9, 2016

The complete UAH v6.0 data for April were released on Friday.  I could have presented this earlier, but there are some more important things in my life, like grandkids’ sleepovers and Mothers’ Day.  Back to business.  I present all the graphs for various regions, and as well summaries for easier comparison.  The Pause still refuses to go away, despite all expectations.

These graphs show the furthest back one can go to show a zero or negative trend (less than +0.1C/ 100 years) in lower tropospheric temperatures. I calculate 12 month running means to remove the small possibility of seasonal autocorrelation in the monthly anomalies. Note: The satellite record commences in December 1978- now 37 years and 5 months long- 448 months. 12 month running means commence in November 1979. The graphs below start in December 1978, so the vertical gridlines denote Decembers. The final plotted points are April 2016.

 [CLICK ON IMAGES TO ENLARGE]

Globe:

Apr 16 globe

The 12 month mean to April 2016 is +0.43C.  However, the Pause is still an embarrassing reality! For how much longer we don’t know.

And, for the special benefit of those who think that I am deliberately fudging data by using 12 month running means, here is the plot of monthly anomalies, which shows that The Pause is over by my rather strict criterion:

Apr 16 globe mthly

+0.22C/100 years since December 1997- not exactly alarming.  The Pause will return sooner with monthly anomalies than 12 month means of course.

Northern Hemisphere:

Apr 16 NH

The Northern Hemisphere Pause refuses to go quietly and remains at the same length. It may well disappear in the next month or two.

Southern Hemisphere:

Apr 16 SH

The pause has shortened by one month.  For well over half the record the Southern Hemisphere has zero trend.

Tropics:

Apr 16 Tropics

The Pause has shortened by 3 months.

Tropical Oceans:

Apr 16 Tropic Oceans

The Pause has shortened by 3 months.

Northern Extra Tropics:

Apr 16  NH ExtraTropics

The Pause by this criterion has ended in this region, however note that the slope since 1998 is +0.17 +/- 0.1C per 100 years compared with +1.56C for the whole period.  That’s not much above dead flat.

Southern Extra Tropics:

Apr 16  SH ExtraTropics

The Pause has lengthened by one month.

Northern Polar:

Apr 16 NP

No change.

Southern Polar:

Apr 16 SP

At -0.18C/ 100 years, this region is cooling for the entire record.

USA 49 States:

Apr 16 USA 49

No change

Australia:

Apr 16 Oz

One month longer.

The next graphs summarise the above plots. First, a graph of the relative length of The Pause in the various regions:

Pause length

Apart from  the North Polar, whose Pause is shorter, and the Northern Extra Tropics, whose Pause has ended, all other regions have a Pause of 18 years 3 months (half the record) or longer- including the South Polar region which has been cooling for the whole record,

The variation in the linear trend for the whole record, 1978 to the present:

Trends 1978 regions

Note the decrease in trends from North Polar to South Polar.

And the variation in the linear trend since June 1998, which is about halfway between the global low point of December 1997 and the peak in December 1998:

Trends 1998 regions

The only region to show strong warming for this period is the North Polar region: the Northern Extra Tropics at +0.18C/ 100 years has very mild warming, and the Northern Hemisphere at +0.12C/ 100 years is virtually flat: all other regions are Paused or cooling.

12 month means will continue to grow for the next few months, so the Pause as  here defined may disappear shortly, and may not reappear until early 2018.  The impact of the coming La Nina will be worth watching.  Unless temperatures reset at a new, higher level and continue rising, very low trends will remain.

The Myth of Fossil Fuel Subsidies- Ignorance, Misinformation, and Blatant Lies

April 20, 2016

If you tell a lie big enough and keep repeating it, people will eventually come to believe it.”

This idea, usually attributed to Joseph Goebbels, is central to propaganda and misinformation in all societies, not merely Nazi or Stalinist states.   It raises its ugly head in multiple ways in our otherwise enlightened society, not least in the propaganda spread by the Green movement.  Big lies, smaller lies, misinformation, ignorant assumptions passed off as truth, and illogical arguments, all feature in the call for an end to ‘taxpayer subsidies’ for fossil fuels.

The Australian Greens and their acolytes have been very vocal about ending fossil fuel ‘subsidies’.  A quick internet search reveals a green-sponsored organisation called Market Forces http://www.marketforces.org.au/ which has been promoting this meme.

Time for a Reality Check.

Ignorance: 

From the Market Forces website:

“How your taxes subsidise fossil fuels

There are a number of national tax-based subsidies that encourage fossil fuel production and consumption, adding up to a huge total of around $12 billion each year.

By far the largest contributor to the tax-based subsidies total is the Fuel Tax Credit Scheme, which provides around $6 billion worth of credits and grants to cover the tax paid on fuel to reduce its overall costs to heavy users. It is estimated that some 20% of these fuel tax credits go directly to fossil fuel producers. We have included the full amount as it all goes to supporting the consumption of fossil fuels.”

From the ATO:

“Fuel tax credits provide businesses with a credit for the fuel tax (excise or customs duty) that’s included in the price of fuel used in:

machinery

plant

equipment

heavy vehicles

light vehicles travelling off public roads or on private roads.

The amount depends on when you acquire the fuel, what fuel you use and the activity you use it in….

Some fuels and activities are not eligible including fuel you use in light vehicles of 4.5 tonnes gross vehicle mass (GVM) or less, travelling on public roads.”

People who have never operated a business are unaware that these are tax credits for the expenses of operating businesses, in particular transport and off-road equipment.  Transport costs directly contribute to the cost of living, particularly in more remote areas, so tax credits are in effect a subsidy for ordinary Australians.  The fuel excise that we all pay was designed to raise money for road maintenance- including the roads that electric cars and bicycles use.  Operators of equipment that doesn’t use roads- farm and mining equipment, fishing boats, industrial plant, the things that actually earn money for the economy– should not have to subsidise the taxes of everybody else.

Market forces also nominate as “Subsidies for fossil fuels” Accelerated Depreciation concessions and concessional excise on avgas and jet fuel.  However aircraft don’t use roads either, and accelerated depreciation assists all business reinvestment- not just for petrol vehicles.  If you buy an electric car for business use, you can claim accelerated depreciation on it as well.

The people behind Market Forces are merely displaying their ignorance about running a business and how the economy actually works for their benefit.

Misinformation:

“Public finance for fossil fuels

The Australian government continues to support the expansion of the fossil fuel industry by using public funds to finance fossil fuel companies and projects.

…..

EFIC is Australia’s ECA, which is a semi-governmental financial institutions that provides loans, insurance and guarantees to support the international operations of local companies, or to projects that hold some national value. ECAs often lend far more than commercial banks and offer long-term, low-interest debt that makes a project much more bankable.

While EFIC doesn’t lend to local coal projects, it loaned over $1 billion to the massive Ichthys LNG project of the coast of Northern Australia at the end of 2012.

On top of this, EFIC provided a total of more than $400 million in finance to national and international fossil fuel projects in 2013 and 2014.

……

Australia also holds shares and plays a significant role in two IFIs, otherwise known as multilateral development banks, the World Bank Group and the Asian Development Bank. Through Australia’s involvement in these institutions, we have contributed a total of almost $300 million worth of finance to the global fossil fuel industry over the past two years.”

This is misinformation.  Loans have to be repaid at some point in the future so should be regarded as cost neutral over the long term.  As well, these projects promote much infrastructure other than “huge, dirty coal power developments”.

The Greens appear to be against not just fossil fuels, but any development that might be good for the human race- roads, railways, ports, electricity, all mining, mechanised agriculture- which the people of underdeveloped nations desperately need.

Finally, Blatant Lies:

Market Forces also identifies “direct handouts”:

“Direct contributions and handouts to the fossil fuel industry

There are a number of federal and state bodies and initiatives that directly contribute to the expansion and continuation of the local fossil fuel industry….

Geoscience Australia is a government body that engages in fossil fuel exploration activities as one of its major operations. With a specific focuses (sic) on offshore reserve development, Geoscience Australia also provides exploration data and other support to fossil fuel companies.

This federal government institution devotes $29 billion dollars to exploration annually, and this figure is added to by extra funding from within the national budget.”

$29 billion dollars?  You’d think somebody might have noticed!

From the Geoscience Australia website:

“Geoscience Australia is Australia’s pre-eminent public sector geoscience organisation. We are the nation’s trusted advisor on the geology and geography of Australia. We apply science and technology to describe and understand the Earth for the benefit of Australia.”

The 2014-15 Annual Report for Geoscience Australia shows expenditure of $198.8 million, offset by revenue of $59.2 million- a long way short of $29 billion!  And that $198.8 million is spent on many other projects besides minerals exploration, of which fossil fuel exploration is one part.

This is a blatant lie, and a big one.

Continuing:

“… capital injections to state-owned electricity generators. In 2014, these injections totalled more than $600 million”  in Queensland and Western Australia.

The authors fail to mention the millions in dividends that the Queensland government has stripped out of electricity providers over the past few years- does this mean Queensland taxpayers are being subsidised by fossil fuel?  From ABC News (7 October 2015):

“The Energex annual report, released last week, shows dividends paid to the State Government rose from $406 million in 2014 to $1.3 billion in the 2014-2015 financial year.

Alliance of Electricity Consumers lobby group spokesman Jonathan Pavetto told 612 ABC Brisbane Ergon dividends rose from $400 million to $1.9 billion over the same period.”

It seems the government got its money back.

Market Forces goes on to claim:

“The worst offender, Queensland, has spent over $2.2 billion of public money over the past two years on rail and port infrastructure, much of which supports fossil fuels and coal exportation in particular.”

None of this money (apart from routine maintenance) has been spent on coal lines- none have been built in the past five years.  The Greens and their sympathisers are very fond of public transport, especially electric trains.  $4.4 billion is to be spent from 2013 to 2018 on suburban trains for the south east corner around Brisbane.  More than $170 million was spent on the existing Citytrain network in 2014-15 alone, plus the new line to Redcliffe worth $1147 million, $300 million contributed by the Queensland government.  Queensland Rail’s 2014-15 Annual Report lists considerable expenditure on regional lines- not the coal network- replacing bridges and improving track.

Rail and port expenditure can be regarded as an investment meant to raise more than is spent.  Queensland’s mineral rail lines for years have subsidised passenger services, including the Citytrain network in Brisbane.  QR made a profit of $223 million in 2014-15- very largely due to mineral freight traffic.  A dividend of $179 million is payable to the Queensland government in 2016.

As Government owned corporations, all ports “operate according to commercial principles, raise their own revenue and make dividend and tax equivalent payments to the Queensland Government.”  The same applies to Queensland Rail.  Investment in coal terminals is a commercial investment decision, not a subsidy or a handout.  Taxpayers can expect to get their money back.

Far from taxpayers subsidising fossil fuels, coal and gas extraction subsidises taxpayers through mining royalties, rail freight and port charges, and taxes.

Conclusion:

The Market Forces website is full of the misinformation, ignorance, and outright lies that Global Warming Enthusiasts delight in using.

But what else can you expect from an organisation that is an affiliate of Friends of the Earth, and many of whose team have backgrounds with Greenpeace and the Greens.

Antarctic Trends

April 17, 2016

Data from UAH Version 6.0 show the South Polar region to be unique in that it has a Pause, if not very mild cooling, for the whole of the satellite record, since December 1978. In this post I dig in a little deeper, and also look at surface data from Australia’s Antarctic bases.

Fig.1: Monthly TLT for the South Polar region (60- 85 S)

SP monthly

Fig. 2: Three Monthly TLT

SP 3m

Both plots show no evidence of any warming. However, Land areas are warming:

Fig. 3: SP Land: 3 month means

SP land 3m

While the Ocean area is cooling:

Fig. 4: SP Oceans: 3 month means

SP ocean 3m

Summers are warming:

Fig. 5: South Polar Summers (Yearly)

SP summer

While winters are cooling rapidly:

Fig. 6: South Polar Winters

SP winter

Especially Ocean winters, when the sea ice is at its greatest and thickest extent.

Fig.7:  SP Ocean Winters

SP ocean winter

Perhaps the sea ice insulates the atmosphere from the water below the ice? If so, in summer, with sea ice extent much reduced, the atmosphere above the ocean should be warmed much more than above the land, which is almost totally covered by ice. Let’s check:

Fig.8:  SP Ocean Summers

SP summer ocean

Fig.9:  SP Land Summers

SP summer land

Nope- TLT above land area is warming at four times the rate of ocean areas.

It’s not a great mystery. Here’s why.

We should not read too much into whether individual months create records or not, nor should we stress about the seasonal differences. Here’s an example of individual Octobers.

Fig.10: Octobers from 1979-2015

SP land october

Note the rising and falling pattern: a series of below average Octobers is followed by a series of above average Octobers.  A trend using only Octobers would show warming, as the record starts with below average Octobers and ends with above average. (Just like some global datasets!)

These patterns are evident, but with different values, in all months, which is why winters appear to be cooling and summers appear to be warming.

Fig.11:  SP Ocean Junes from 1979-2015

SP ocean junes

The most we can say is that the long term trend of ALL months shows no evidence of any warming, i.e. a Pause.

So is this just an artefact of the fairly short satellite record? We can check against surface data from Australia’s Antarctic stations at Mawson and Davis. (There is insufficient overlap to make a useful splice between closed and open sites at Casey.) These stations are on the coast far from the Antarctic Peninsula.

Fig. 12:  Monthly mean temperatures, Mawson Base

mawson mean

There is a Pause, or slight cooling, over the past 62 years.

Fig. 13: Monthly mean temperatures, Davis Base

davis mean

At Davis, a Pause, or slight warming, over the past 47 years.

The Pause in the South Polar region is real.

The Pause Update: March 2016 (Complete)

April 8, 2016

The complete UAH v6.0 data for March have been released. I present all the graphs for various regions, and as well summaries for easier comparison.  The Pause refuses to go away, despite greatly exaggerated rumours of its death.

These graphs show the furthest back one can go to show a zero or negative trend (less than +0.1C/ 100 years) in lower tropospheric temperatures. I calculate 12 month running means to remove the small possibility of seasonal autocorrelation in the monthly anomalies. Note: The satellite record commences in December 1978- now 37 years and 4 months long- 448 months. 12 month running means commence in November 1979. The graphs below start in December 1978, so the vertical gridlines denote Decembers. The final plotted points are March 2016.

As I intimated in the previous post, there have been some small changes in the data. Some slope values have changed slightly.

[CLICK ON IMAGES TO ENLARGE]

Globe:

Mar 16B globe

Sorry, GWEs, The Pause, for more than half the record, is still an embarrassing reality! For how much longer we don’t know.

And, for the special benefit of those who think that I am deliberately fudging data by using 12 month running means, here is the plot of monthly anomalies, which shows that The Pause is over by my rather strict criterion:

global monthly B 2016 mar

I will continue posting these figures showing these scarey trends from monthly anomalies. The Pause will return sooner with monthly anomalies than 12 month means of course.

Northern Hemisphere:

Mar 16B NH

The Northern Hemisphere Pause refuses to go quietly and remains at more than half the record. It may well disappear in the next month or two.

Southern Hemisphere:

Mar 16B SH

For well over half the record the Southern Hemisphere has zero trend.

Tropics:

Mar 16B Tropics

Tropical Oceans:

Mar 16B Tropic Ocean

Northern Extra Tropics:

Mar 16B NExtraTropics

The Pause by this criterion has ended in this region, however note that the slope since 1998 is one tenth of the slope for the whole period.

Southern Extra Tropics:

Mar 16B SExtraTropics

Hmmm!

Northern Polar:

Mar 16B NP

The Pause here has shortened.

Southern Polar:

Mar 16B SP

As the trend exceeds -0.1, this region is cooling for the entire record.

USA 49 States:

Mar 16B USA

Australia:

Mar 16B Oz

The next graphs summarise the above plots. First, a graph of the relative length of The Pause in the various regions:

Pause length var regions

Apart from  the North Polar, whose Pause is shorter, and the Northern Extra Tropics, whose Pause has ended, all other regions have a Pause of 18 years or longer- including the South Polar region which has been cooling for the whole record,

The variation in the linear trend for the whole record, 1978 to the present:

Trends 1978 now mar 16

Note the decrease in trends from North Polar to South Polar.

And the variation in the linear trend since June 1998, which is about halfway between the global low point of December 1997 and the peak in December 1998:

Trends 1998 now mar 16

The only region to show strong warming for this period is the North Polar region: the Northern Extra Tropics has very mild warming: all other regions are Paused or cooling.

12 month means will continue to grow for the next few months, so the Pause may disappear shortly, and may not reappear until early 2018.  The impact of the coming La Nina will be worth watching.


Follow

Get every new post delivered to your Inbox.

Join 73 other followers