Archive for the ‘Antarctica’ Category

Fingerprints of Greenhouse Warming: Poles Apart

February 26, 2018

If global warming is driven by the influence of carbon dioxide and other man made greenhouse gases, it will have certain characteristics, as explained by Karl Braganza in his article for The Conversation (14 June 2011).

As water vapour is a very strong greenhouse gas, it will tend to mask the influence of man made greenhouse gases, and because solar radiation is such a powerful driver of temperature, this also must be taken into account.  Therefore, the characteristic greenhouse warming fingerprints are best seen where solar and water vapour influences can be minimised: that is, at night time, in winter, and near the poles.  So we would look for minimum temperatures rising faster than maxima; winter temperatures rising faster than summer, and polar temperatures rising faster than the tropics.  Indeed, polar temperature change in winter should be an ideal metric, as in Arctic and Antarctic regions the sun is almost completely absent in winter, and the intense cold means the atmosphere contains very little water vapour.  We can kill three birds with one stone, as winter months in polar regions are almost continuously night.

So let’s look at the evidence for greater winter and polar warming.

Figure 1: North Polar Summers:

NP summers

Figure 2:  North Polar Winters:

arctic all winters

Yep, North Polar winters are warming very strongly, at +2.58C/100 years, and much faster than summers (+1.83C/100 years)- strong evidence for anthropogenic global warming.  And warming is much faster than the Tropics (+1.023C/100 years):

Figure 3: Tropics

Tropics TLT

Unfortunately for the theory, the opposite happens in the South Polar region:

Figure 4: South Polar Summers

SP summers

Figure 5:  South Polar Winters:

antarctic all winters

While summers are warming (+0.58C/100 years), winters are cooling strongly at -1.66C/100 years.  Over land areas, with little influence from the ocean, very low moisture, and very little solar warming, winters are cooling even faster:

Figure 6:  Antarctic winters over land:

antarctic land winters

This is the exact opposite of what is supposed to happen in very dry, cold, and dark conditions- at night, in winter, at the poles.  Can this be because carbon dioxide and other greenhouse gases are NOT well mixed, and are in fact decreasing in concentration near the South Pole?

Figure 7: Carbon Dioxide concentration at Cape Grim (Tasmania):

C Grim CO2

Figure 8:  South Polar region TLT (all months) as a function of CO2 concentration:SP vs co2

No, while Cape Grim data show CO2 concentration to be increasing in the Southern Hemisphere, but without the marked seasonal fluctuations of the Northern Hemisphere, there is NO relationship between CO2 and temperature in the South Polar region.

Is it because the oceans around Antarctica are cooling?

Figure 9: South Polar Ocean TLT:

SP ocean

Nope- -0.01C/100 years (+/- 0.1C).  Neither cooling nor warming.

The cold, dry, dark skies over Antarctica are getting colder in winter.  Summers show a small warming trend.

Conclusion:  The fingerprints of man made greenhouse warming are completely absent from the South Pole, and differences between North and South Polar regions must, until shown otherwise, be due to natural factors.

Data sources:

https://www.nsstc.uah.edu/data/msu/v6.0/tlt/uahncdc_lt_6.0.txt

http://www.csiro.au/en/Research/OandA/Areas/Assessing-our-climate/Latest-greenhouse-gas-data

Mandated disclaimer:-

“Any use of the Content must acknowledge the source of the Information as CSIRO Oceans & Atmosphere and the Australian Bureau of Meteorology (Cape Grim Baseline Air Pollution Station) and include a statement that CSIRO and the Australian Bureau of Meteorology give no warranty regarding the accuracy, completeness, currency or suitability for any particular purpose and accept no liability in respect of data.”

Advertisements

Poles Apart

November 4, 2016

Satellite data from UAH (University of Alabama- Huntsville) are estimates of temperature in the Lower Troposphere, and thus a good indicator of whether greenhouse warming is occurring.  My next post about the length of The Pause in various regions will be ready in a few days’ time.  Meanwhile, I’ve been looking at the data in a different way.

In this post I will be examining how and when temperatures have changed in discrete regions of the globe, including over land and over oceans.  There are no startling revelations, but a different approach reinforces the need to understand climate variability in different regions.  The important regions of course are the Tropics and the Poles, and fortunately UAH data is available separately for just these three regions.

Firstly, Figure 1 shows the regions for which UAH has atmospheric data.

Fig. 1:  UAH Data Regions

regions

The Northern and Southern Extra-Tropics include the Polar regions, so there are three discrete regions which do not overlap: Tropics, North Polar, and South Polar.  It would be very helpful if Dr Spencer provided data for the Extra Tropical regions excluding the Polar Regions.

For this analysis I use CuSum, which is a simple test of data useful for detecting linearity or otherwise, and identifying sudden changes in trend, or step changes.  It can be used for any data at all- bank balance, car accidents, rainfall, GDP, or temperature.  It is simple to use:  find the mean of the entire data, calculate differences for every data point from this mean, then calculate the running sum (Cumulative Sum) of the differences.  If done correctly, the final figure will be zero.  Plot the CuSum usually by time and identify points of any sudden change in direction.  A generally straight or smoothly curving line indicates linearity, but points of sudden change mean a change in trend or a step change.  (Further, data series with identical start and end points, exactly the same number of data points, and anomalies from the same period- such as UAH- should produce directly comparable CuSums.)  These points, and ranges between them, are then checked in the original data. The usefulness of CuSums will become obvious as we go, especially as they are compared.

The next figures show CuSum plots for various regions.

Fig. 2:  UAH CuSums for all regions

cusums-all

Points to note:

The brown line at the top is the South Polar region.  The line wobbles about zero, indicating little relative change in temperature from the mean.  Contrast this with the North Polar region (the blue line at the bottom.)  The Polar regions are conspicuously different from the other regions and from each other.

The spaghetti lines clustered in the middle are CuSums for (in order from top to bottom): Southern Extra-Tropics; Southern Hemisphere; Tropics; Globe; Northern Hemisphere; Northern Extra-Tropics.

The red arrows point to wobbles coinciding with major ENSO events.  These changes in direction indicate trend changes or step changes in the original data.  There are other changepoints, notably 2002-2003.

The vertical red line joins changepoints in all the CuSums in mid-1991 following the eruption of Mt Pinatubo.

Fig. 3: UAH CuSums for the Tropics, South Polar, and North Polar regions

cusums-np-sp-tropics

Note there is little similarity between CuSums for the only regions with discrete data, and you have to look carefully to see North Polar CuSums changing some months after Tropics, but not always.

The next plots show the differing responses of Land and Ocean areas.

Fig. 4:   UAH CuSums for the Globe, Land and Ocean

cusums-land-ocean

Note that Land areas have greater relative temperature changes than the Oceans, and that the Global mean closely mirrors the Ocean CuSums (as the Globe is mostly Ocean).  The major turning point is in 1997-98.

Fig. 5:  UAH CuSums for the Tropics, Land and Ocean

cusums-tropics-land-ocean

Note once again the mean CuSums closely follow that of the Ocean as 20 degrees North to 20 degrees South is mostly water.  The changepoints are very distinct.

Fig. 6:  UAH CuSums for the North Polar region, Land and Ocean

cusums-np-land-ocean

Note that all CuSums are close, but after 1982 Ocean CuSum changes relatively more than Land- the blue line has switched to below the mean.  The main changepoints are 1991, 1993-94, 2002, 2009, and 2015.

Fig. 7:  UAH CuSums for the South Polar region, Land and Ocean

cusums-sp-land-ocean

Now that is interesting.  Note all three CuSums have similar changepoints, but Land varies more than Ocean and after 1992 Land is largely negative, Ocean is largely positive.  The Land CuSum range is about half of the North Polar equivalent.

Remember CuSums in Figure 4 showed Land temperatures must vary more than Ocean (though not in the North Polar region).  The next figures show plots of UAH original data (not CuSums).

Fig. 8:  UAH original data for the Globe, Land and Ocean

graphs-globe-land-ocean

I find a visual representation demonstrates greater relative variation in Land temperatures well.

Fig. 9:  UAH original data for the Tropics, Land and Ocean

graphs-tropics-land-ocean

Note much greater fluctuation with ENSO, and Land varying a little more that Ocean.

Fig. 10:  UAH original data for the North Polar region, Land and Ocean

graphs-np-land-ocean

Note the much greater variation, but Land is more often than not masked by Ocean.

Fig. 11:  UAH original data for the South Polar region, Land and Ocean

graphs-sp-land-ocean

Note the much greater range in Land data, with large non-linear multi-year swings- calculate a linear trend for Land at your peril.

Having found changepoints, we can now analyse periods between them.  One way is to calculate means, and step changes between periods.

Fig. 12:  UAH original data for the Tropics based on CuSum changepoints

steps-tropics

I deliberately ignored the 2001 changepoint- it made very little difference to means and appears to be a continuation of the series starting in 1997.  Note the step changes are very small, and the final step change is reliant on current data and will change.  While I have shown means and steps, the data are decidedly non-linear with sharp spikes and multi-year rises and falls.

Fig. 13:  UAH original data for the North Polar region based on CuSum changepoints

steps-np

Note the large step change in the mid-1990s occurs before the 1997-98 El Nino.  The range is much greater than the Tropics.

As the Land data for the South Polar region looks more interesting, I decided to use Land instead of the mean.

Fig. 14:  UAH original data for the South Polar region (Land data) based on CuSum changepoints

steps-sp-land

Up and down like a toilet seat!

Conclusions:

The data series are characterised by step changes and multi-year rises and falls.

The Polar regions are “poles apart” in their climate behaviours.  Explanations might include: different geography (an ocean almost surrounded by land but subject to warming and cooling currents vs a continent isolated from the rest of the world by a vast ocean); different snow and ice albedo responses; different cloud influences.

The Global mean combines data from regions with very different climatic behaviour.  Averaging hides what is really going on.  The Tropics are governed by ENSO events, and the Poles are completely different.

Please Dr Spencer can you provide separate data for 20-60 degrees North and South?

Comments and interpretations are most welcome.

Antarctic Trends

April 17, 2016

Data from UAH Version 6.0 show the South Polar region to be unique in that it has a Pause, if not very mild cooling, for the whole of the satellite record, since December 1978. In this post I dig in a little deeper, and also look at surface data from Australia’s Antarctic bases.

Fig.1: Monthly TLT for the South Polar region (60- 85 S)

SP monthly

Fig. 2: Three Monthly TLT

SP 3m

Both plots show no evidence of any warming. However, Land areas are warming:

Fig. 3: SP Land: 3 month means

SP land 3m

While the Ocean area is cooling:

Fig. 4: SP Oceans: 3 month means

SP ocean 3m

Summers are warming:

Fig. 5: South Polar Summers (Yearly)

SP summer

While winters are cooling rapidly:

Fig. 6: South Polar Winters

SP winter

Especially Ocean winters, when the sea ice is at its greatest and thickest extent.

Fig.7:  SP Ocean Winters

SP ocean winter

Perhaps the sea ice insulates the atmosphere from the water below the ice? If so, in summer, with sea ice extent much reduced, the atmosphere above the ocean should be warmed much more than above the land, which is almost totally covered by ice. Let’s check:

Fig.8:  SP Ocean Summers

SP summer ocean

Fig.9:  SP Land Summers

SP summer land

Nope- TLT above land area is warming at four times the rate of ocean areas.

It’s not a great mystery. Here’s why.

We should not read too much into whether individual months create records or not, nor should we stress about the seasonal differences. Here’s an example of individual Octobers.

Fig.10: Octobers from 1979-2015

SP land october

Note the rising and falling pattern: a series of below average Octobers is followed by a series of above average Octobers.  A trend using only Octobers would show warming, as the record starts with below average Octobers and ends with above average. (Just like some global datasets!)

These patterns are evident, but with different values, in all months, which is why winters appear to be cooling and summers appear to be warming.

Fig.11:  SP Ocean Junes from 1979-2015

SP ocean junes

The most we can say is that the long term trend of ALL months shows no evidence of any warming, i.e. a Pause.

So is this just an artefact of the fairly short satellite record? We can check against surface data from Australia’s Antarctic stations at Mawson and Davis. (There is insufficient overlap to make a useful splice between closed and open sites at Casey.) These stations are on the coast far from the Antarctic Peninsula.

Fig. 12:  Monthly mean temperatures, Mawson Base

mawson mean

There is a Pause, or slight cooling, over the past 62 years.

Fig. 13: Monthly mean temperatures, Davis Base

davis mean

At Davis, a Pause, or slight warming, over the past 47 years.

The Pause in the South Polar region is real.